

SM3110 Technical Reference

Preliminary

Copyright Notice

Copyright 1999 by Silicon Magic Corporation. All rights reserved.

This technical reference manual is the intellectual property of Silicon Magic Corporation. You may not reproduce, transmit, transcribe, store in a retrieval system or translate into any language or any computer language in any form or by any means - electronic, mechanical, magnetic, optical, chemical, manual or otherwise - any part of this publication without the express prior written permission of Silicon Magic Corporation.

Revision Number	Contents	Contributer / Writer	Date
1.0.0.0	First Release	Staff / Inc	8/12/1999

Table of Contents

1	SM3110 Features Overview
1.1	Features Overview 1-2
2	Architecture Overview
2.1	System Configuration 2-2
2.2	Internal Configuration 2-3
2.2.1	Host Interface 2-4
2.2.2	Embedded Memory 2-5
2.2.3	VGA Module 2-8
2.2.4	2D Rendering Engine 2-9
2.2.5	3D Rendering Engine 2-10
2.2.6	Display Pipeline
2.2.7	Video Input 2-13
2.2.8	Motion Compensation 2-14
2.2.9	ROM Port
2.3	Additional Features 2-16
2.3.1	Power Management 2-16
2.3.2	Board-level Test Functions
2.3.3	Clocks
2.3.4	Inter-IC (I ² C) Interface

3	Data Sheet
3.1	Pin Descriptions
3.1.1	AGP/PCI Interface
3.1.2	Panel Interface
3.1.3	ROM Interface
3.1.4	ZV Port
3.1.5	CRT Interface 3-5
3.1.6	Reference Clock Input 3-5
3.1.7	Programmable I/O Pins
3.1.8	Testing Pins 3-6
3.1.9	Reserved Pins
3.1.10	Digital Power and Ground Pins
3.1.11	Analog Power and Ground Pins
3.1.12	Pad Descriptions
3.1.13	Alternate Pad Function 3-9
3.1.14	Pin Assignment (by pin number)
3.1.15	Pin Assignment (by signal name)
3.2	Electrical Specifications 3-18
3.2.1	Maximum DC Specifications
3.2.2	Normal Operating DC Specifications
3.2.3	DC Characteristics 3-19
3.2.4	AC Timing 3-21
3.2.4.1	AGP Timing 3-21
3.2.4.2	PCI Timing 3-24
3.2.4.3	PCI Clock Timing 3-26
3.2.4.4	Panel Interface
3.2.4.5	BIOS ROM Interface 3-28
3.2.4.6	ZV Port
3.2.4.7	Reference Clock 3-33
3.2.4.8	Reset
3.3	Mechanical Specifications 3-35
3.4	Ordering Information

4	Register Summary	
4.1	Control Address Space Overview	
4.2	Register Listing for Control Address Space	4-4
4.2.1	2D Control (Display 0, Display 1) (1FF0000H)	4-5
4.2.1.1	Status/Control (+000H)	4-6
4.2.1.2	Reserved (+100H)	
4.2.1.3	Host Bus Master (+200H)	4-14
4.2.1.4	VGA Registers (+300H)	
4.2.1.5	Peripheral Ports (+400H)	
4.2.1.6	LCD Panel (+500H)	
4.2.1.7	Reserved (+600H)	
4.2.1.8	Reserved (+700H)	
4.2.1.9	2D Rendering Engine (+800H)	4-31
4.2.1.10	Memory Controller (+900H)	
4.2.1.11	Surface Descriptors (+A00H)	4-43
4.2.1.12	Channel Descriptors (+B00H)	
4.2.1.13	Buffer Descriptors (+C00H)	4-48
4.2.1.14	Display Control (+D00H)	
4.2.1.15	Display Viewports and Timing (+E00H)	4-68
4.2.1.16	PCI/AGP Configuration Registers (+F00H)	4-76
4.2.2	3D Control (1FF3000H)	4-84
4.2.2.1	Command Decode Unit (+000H)	
4.2.2.2	Triangle Setup Unit (+040H)	4-91
4.2.2.3	Edge-Walking Unit (+080H)	
4.2.2.4	Texture Mapping Unit (+0C0H)	
4.2.2.5	Z Buffer Unit (+100H)	4-96
4.2.2.6	Per Fragment Unit (+140H)	
4.2.2.7	Memory Interface Unit (+180H)	. 4-104
4.2.2.8	DMA (+1C0H)	
4.2.2.9	Motion Compensation (+300H)	
4.2.2.10	Stipple Mask Array (+400H)	
4.2.2.11	Texture Map LOD Table Array (+580H)	
4.2.2.12	Temporary Array for Triangle Setup Unit (+5C0H) .	
4.2.3	3D Command/Parameter FIFO (1FF4000H)	
4.2.4	2D Command/Parameter FIFO (1FF8000H)	
4.2.5	2D Image Data FIFO (1FFC000H)	. 4-117

4.3	Standard VGA Registers	4-118
4.3.1	Register Locations	4-118
4.3.2	General Registers	4-120
4.3.3	CRT Controller (CRTC)	4-122
4.3.3.1	VGA CRTC Resolution Limitations	4-122
4.3.3.2	CRTC Index/Data Registers	4-123
4.3.4	Sequencer	4-128
4.3.5	Graphics Controller	4-131
4.3.6	Attribute Controller	4-137
4.3.7	Enhanced VGA Registers	4-140
4.3.7.1	Enhanced Register Access Enable	4-140
4.3.7.2	Enhanced Control Access	4-141
4.3.7.3	Bank Offset	4-142
4.3.7.4	User-Defined Scratch Registers	4-143
4.3.7.5	CRTC Test	4-143

5	BIOS Specifications	
5.1	Overview	. 5-2
5.1.1	SM3110 Specific Extended BIOS Functions	. 5-5
5.1.2	Standard VGA BIOS Functions	. 5-6
5.1.3	VESA BIOS Extended Functions	. 5-8
5.1.4	SCRATCHPAD Register Usage	. 5-9
5.2	VGA BIOS Functions	5-12
5.2.1	SM3110 Extended BIOS Functions (5Fh)	5-13
5.2.1.1	Subfunction: 00h - Query BIOS Version	5-13
5.2.1.2	Subfunction: 01h - Query VBE Mode Support	
5.2.1.3	Subfunction: 02h - Set VBE Mode for Second View	5-14
5.2.1.4	Subfunction: 03h - Enable Second View Mode	5-14
5.2.1.5	Subfunction: 04h - Disable Second View Mode	5-14
5.2.2	Standard VGA BIOS Functions	5-15
5.2.2.1	Function: 00h - Set Video Mode	5-15
5.2.2.2	Function: 01h - Set Cursor Type	5-16
5.2.2.3	Function: 02h - Set Cursor Position	5-17
5.2.2.4	Function: 03h - Get Cursor Position	
5.2.2.5	Function: 04h - Light Pen (Not Supported)	5-18
5.2.2.6	Function: 05h - Select Active Display Page	5-18
5.2.2.7	Function: 06h - Window Scroll Up	5-19
5.2.2.8	Function: 07h - Window Scroll Down	5-19
5.2.2.9	Function: 08h - Read Character/Attribute at Cursor	5-20
5.2.2.10	Function: 09h - Write Character/Attribute at Cursor	5-21
5.2.2.11	Function: 0Ah - Write Character at Cursor Position	5-22
5.2.2.12	Function: 0Bh - Background/Border, Palette	
5.2.2.13	Function: 0Ch - Write Dot (Pixel)	5-24
5.2.2.14	Function: 0Dh - Read Dot (Pixel)	
5.2.2.15	Function: 0Eh - Write Character to RAM in TTY Mode	5-25
5.2.2.16	Function: 0Fh - Get Video State	
5.2.2.17	Function: 10h - Palette Register (Subfunctions)	5-26
5.2.2.18	Function: 11h - Character Generation (Subfunctions).	
5.2.2.19	Function: 12h - Alternate Select (Subfunctions)	
5.2.2.20	Function: 13h - Write Teletype String	
5.2.2.21	Function: 1Ah - Get/Set Display Combination Code	
5.2.2.22	Function: 1Bh - Collection of Video Information	
5.2.2.23	Function: 1Ch - Video State Information	5-64

5.3	VESA VBE BIOS Functions	5-66
5.3.1	Overview	5-66
5.3.2	DDC Implementation	5-66
5.3.2.1	VBE Mode Numbers	5-67
5.3.2.2	VBE Functions Call	5-68
5.3.2.3	VBE Return Status	5-68
5.3.3	VESA BIOS Extended Functions (4Fh)	5-69
5.3.3.1	Subfunction: 00h - Return VBE Controller Information	5-69
5.3.3.2	Subfunction: 01h - Return VBE Mode Information	5-73
5.3.3.3	Subfunction: 02h - Set VBE Mode	5-82
5.3.3.4	Subfunction: 03h - Return current VBE Mode	5-83
5.3.3.5	Subfunction: 04h - Save/Restore State	5-84
5.3.3.6	Subfunction: 05h - Display Window Control	5-85
5.3.3.7	Subfunction: 06h - Set/Get Logical Scanline Length	5-86
5.3.3.8	Subfunction: 07h - Set/Get Display Start	5-87
5.3.3.9	Subfunction: 08h - Set/Get DAC Palette Format	5-88
5.3.3.10	Subfunction: 09h - Set/Get Palette Data	5-89
5.3.3.11	Subfunction: 0Ah - VBE Protected Mode Interface	5-90
5.3.4	VBE Display Power Management Subfunctions(10h)	5-93
5.3.4.1	Subfunction: 00h - Report VBE/PM Capabilities	5-93
5.3.4.2	Subfunction: 01h - Set Display Power State	5-94
5.3.4.3	Subfunction: 02h - Get Display Power State	5-95
5.3.5	VBE Display Identification (DDC) Subfunctions(15h)	5-96
5.3.5.1	Subfunction: 00h - Report VBE/DDC Capabilities	5-96
5.3.5.2	Subfunction: 01h - Read EDID	5-97
5.3.6	VBE / Flat Panel Subfunctions (11h)	5-98
5.3.6.1	Flat Panel Interface Functions	5-98
5.3.6.2	VBE/FP Completion Codes	5-99
5.3.6.3	Subfunction 00h - Panel Extensions Support 5-	-100
5.3.6.4	Subfunction 01h - Return Flat Panel Info 5-	-102
5.3.6.5	Subfunction 03h - Panel Shading Options 5-	-104
5.3.6.6	Subfunction 06h - Vertical & Horizontal Position 5-	-105
5.3.6.7	Subfunction 07h - Vertical & Horizontal Expansion 5-	-107
5.4	BIOS Data Area Assignments5-	-109

6	Programmer's Reference	
6.1	Overview	6-2
6.2	Address Mapping	6-2
6.2.1	Local Memory Address Space	6-3
6.2.2	Memory-Mapped Resources Address Space	6-5
6.2.3	Control Address Space Memory Mapping	6-6
6.2.3.1	2D Control Registers (Display 0/Display 1)	6-7
6.2.3.2	3D Control Registers	6-8
6.2.3.3	3D Command/Parameter FIFO	6-9
6.2.3.4	2D Command/Parameter FIFO	6-9
6.2.3.5	2D Image Data FIFO	6-9
6.2.4	Display Memory Arrays	6-10
6.2.4.1	Surfaces	6-10
6.2.4.2	Texture Memory	6-10
6.2.4.3	Z-Buffers	6-10
6.2.4.4	Memory Buffer Allocation	6-10
6.2.5	Byte Ordering	6-11
6.3	BIOS Functions	
6.3.1	BIOS Initialization: Power-On Self Test (POST)	6-12
6.3.2	Set Mode	6-14
6.4	Driver Functions	6-15
6.4.1	Device detection	6-15
6.4.2	Device configuration	6-16
6.4.3	Memory-mapped control address	
6.4.3.1	Enable/Disable access	
6.4.3.2	2D Command Port selector	6-18
6.4.3.3	2D Image Data Port selector	
6.4.3.4	VGA I/O Ports	
6.4.3.5	A0000H-based 128K VGA memory	
6.4.3.6	PCI configuration space	
6.4.4	Memory Address Allocation	
6.4.4.1	Local memory address space	
6.4.4.2	Display (video) memory address	
6.4.4.3	16-bit Real Mode Addressing	
6.4.4.4	16-bit Protected Mode Addressing	
6.4.4.5	32-bit Mode Addressing	6-24

6.4.5	Physical Buffers for FIFOs	-26
6.4.6	Linear/Segmented mode 6	-27
6.4.7	Cursor control 6	-28
6.4.7.1	Cursor Format 6	
6.4.7.2	Cursor data buffer and surface	
6.4.7.3	Set Monochrome Cursor data	-30
6.4.7.4	Set Color Cursor data 6	
6.4.7.5	Cursor Deferred control 6	
6.4.7.6	Set Cursor Position and Turn Cursor On	-34
6.4.8	lcon	-36
6.5	2D Functions	
6.5.1	Display Operations 6	
6.5.1.1	Define a Surface 6	
6.5.1.2	Channel Controls - assign surface	
6.5.1.3	Channel Controls - Offsets & viewports location 6	
6.5.1.4	Enable/Disable Channel Display	
6.5.1.5	Set Display FIFO Controls	
6.5.1.6	Set Channel 0 X,Y Scale Factors	
6.5.1.7	Set Overlay Priority 6	
6.5.1.8	Set Mix Controls - Blend 6	
6.5.1.9	Set Mix Controls - Color Keying	
6.5.1.10	Get Displayed Scanline 6	
6.5.2	2D Command and Data FIFOs	-58
6.5.2.1	Image/Data Control Port 6	
6.5.2.2	2D Command Port	
6.5.2.3	FIFO Status 6	-60

6.5.3	2D Rendering Engine Commands
6.5.3.1	Wait Engine Idle 6-61
6.5.3.2	Check FIFO size 6-62
6.5.3.3	Clip Rectangle 6-63
6.5.3.4	Load Mono Pattern 6-64
6.5.3.5	Load Color Pattern 6-64
6.5.3.6	Load General pattern 6-65
6.5.3.7	Block fill (Opaque Rectangle)
6.5.3.8	Transparent Text 6-67
6.5.3.9	Opaque Text 6-68
6.5.3.10	BitBLT
6.5.3.11	Pattern BLT Without Source Operand
6.5.3.12	Display Memory Source BLT with/without Pattern 6-71
6.5.3.13	System Memory Source BLT with/without Pattern 6-72
6.5.3.14	Line Draw
6.6	3D Functions
6.6.1	Overview
6.6.1.1	Feature Set 6-81
6.6.1.2	3D Rendering Engine 6-82
6.6.1.3	3D Rasterization Pipeline
6.6.2	3D Engine Operation 6-86
6.6.2.1	Initialization 6-86
6.6.2.2	3D Command FIFO 6-88
6.6.3	3D Command Format 6-90
6.6.4	3D Primitive Commands 6-91
6.6.4.1	Triangle Strip/Fan 6-92
6.6.4.2	Triangle List 6-93
6.6.4.3	Point List 6-93
6.6.5	Copy Memory and DMA Command
6.6.6	Synchronization Command 6-96
6.6.7	Load State Register Command
6.6.8	Texture Loading 6-100
6.6.9	2D/3D synchronization 6-102
6.6.10	Buffer Issues
6.6.10.1	Buffer Alignment 6-103
6.6.10.2	Buffer Formats
6.6.11	Performance Issues 6-104

6.7	LCD Panel Programming	6-105
6.7.1	LCD Flat Panel Registers	
6.7.1.1		
6.7.1.2	Set to Desired Mode	6-107
6.7.1.3	Standard VGA Modes	6-107
6.7.1.4	Enhanced Modes	6-107
6.7.1.5	Set Mode Sequence	6-109
6.8	Dual View	6-110
6.8.1	Overview	6-110
6.8.2	Enabling Second Display	6-110
6.8.2.1	Enable Simultaneous View	6-111
6.8.2.2	Enable Dual View	6-111
6.9	Motion Compensation	6-112
6.9.1	Overview	6-112
6.9.2	Block Diagram	
6.9.3	Motion Compensation Client Commands	6-115
6.9.3.1	DMCM Commands	6-115
6.9.3.2	DMCM surface allocation	6-116
6.9.4	Registers	
6.9.4.1	Start and End Decode Functions	6-118
6.9.4.2	CDU Start Motion Compensation Command	6-118
6.9.4.3	End of Stream Instruction	6-118
6.9.4.4	Format Conversion Instruction	6-118
6.9.5	Display Memory Requirements	6-120
6.9.5.1	Frame and Format Buffers	6-120
6.9.5.2	Screen Resolutions Supported	6-121
6.9.5.3	System Memory Requirements	6-121
6.10	Power Management	6-122
6.10.1	Overview	6-122
6.10.2	OnNow Power Management	6-122
6.10.3	VESA BIOS Power Management	6-122
6.10.4	Other Power Management	6-122
6.10.5	Registers for OnNow and VESA DPMS	6-123
6.10.5.1	D0 – On	6-123
6.10.5.2	D1 – Standby	
6.10.5.3	D2 – Suspend	6-124
6.10.5.4	D3 – Off	
6.10.6	Registers for Dynamic Power Management	6-125

6.11	Video Capture
6.11.1	Overview
6.11.2	I2C device interface 6-126
6.11.3	Video port control 6-129
6.11.4	Interrupt for video capture 6-13
6.12	TV Out
6.13	Diagnostics
6.14	Software Definitions 6-133
6.14.1	Equates 6-133
6.14.2	Macros 6-142
6.14.3	Clock Synthesizer Programming Guide
6.14.3.1	Theory of Operation
6.14.3.2	Registers 6-14
6.14.3.3	Memory/Dot/Panel Clock Frequency Control 6-14
6.14.3.4	Memory Clock Synthesizer VCO Control 6-146
6.14.3.5	Dot/Panel Clock Synthesizer VCO Control 6-147
6.14.3.6	Selecting Register Value
6.14.3.7	Programming Limitations
6.14.3.8	Register Values for Common Frequencies 6-149

7	Application Notes	
7.1	Overview	. 7-2
7.2	Board Design	. 7-2
7.2.1	Power Supply	. 7-3
7.2.2	Block Diagram	. 7-4
7.2.3	Host Interface	. 7-5
7.2.4	Reference Clock	. 7-6
7.2.5	LCD Panel Interface	. 7-7
7.2.6	LVDS Transmitter Interface	. 7-8
7.2.7	CRT Monitor Interface	7-10
7.2.8	BIOS ROM Interface	7-11
7.2.9	Analog and Digital TV Encoder Interfaces	7-12
7.2.10	TV Decoder Interface	7-13
7.3	Power-On Strapping	7-14
7.3.1	Power-on Strapping Pins	7-14
7.3.2	Strapping Method	7-15
7.3.2.1	External Pull Down Resistor	7-15
7.3.2.2	Registers	7-15
7.3.2.3	Strapping Pin Functions	7-16
7.4	Board-level Testing	7-17
7.4.1	Test Mode Control Pins	
7.4.2	Test Modes	
7.5	Programmable (Peripheral) I/O	7-23
7.5.1	Customer I/O	7-23
7.5.1.1	Customer Pins	
7.5.1.2	Customer Registers	
7.5.2	Peripheral I/O	
7.5.2.1	Peripheral I/O Pins	
7.5.2.2	Peripheral I/O Registers	7-27

Α	Appendix A	
A.1	Pixel Format Information	A-2
A.1.1	Enhanced Data Format	A-2
A.1.2	RGB Pixel Formats	A-3
A.1.3	Palettized/Color Lookup Table	A-5
A.1.4	CLUT Data Format	A-6
A.2	3D Data Formats	A-7
A.2.1	Coordinates	A-7
A.2.2	RGB Pixel Formats	A-7
A.2.3	ARGB Pixel Formats	A-7
A.2.4	Texel Formats	A-8
A.3	Video FormatsA	-10
A.3.1	Cursor	-11
A.3.2	VGA Data Formats A	-12
A.3.3	Planar	-13
A.3.4	Text	-14
A.3.5	Packed Pixel/Linear A	-15
В	Appendix B	
B.1	Graphics Modes Support	
B.1.1	Video Display Window Memory Constraints	
B.1.2	Definitions	
B.1.3	Motion Compensation Memory Requirements	B-3
B.2	Graphics Modes Summary	
B.2.1	Single Display with NTSC Video	
B.2.2	Single Display with PAL Video	
B.2.3	Dual display with NTSC Video	
B.2.4	Dual display with PAL Video	B-7
С	Appendix C	
C.1	References	C-2

1

SM3110 Features Overview

SM3110 Features Overview

Features Overview

2D/3D/Video LCD/CRT Graphics Accelerator

4 Mbytes of embedded graphics RAM

Bi/TriLinear MIPmap 3D Engine

Advanced Floating Point 3D setup engine Z-buffering

3 Op 2D Engine 256 ROP on 8, 16, 24 bpp with transparency

Video playback acceleration

Color and Chroma key Bi-linear (X,Y) interpolated scaling Color space conversion Motion Compensation Bob and Weave

Industry standard Video input support

ZV port, I²C support

MyView[™] dual display support Independent LCD and CRT display

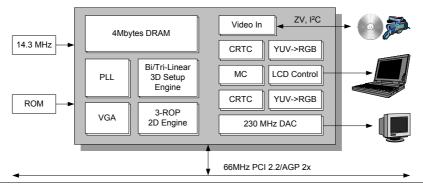
LCD panels and CRT support

TFT up to 1280x1024x24 bpp DSTN up to 1280x1024x16bpp CRT up to 1600x1200x16 bpp

AGP 2x and 66 MHz PCI 2.2 host interface with bus mastering

SmartPowerTM power management system Full VESA 2.0 DPMS and DDC2B support 2.5V and 3.3V operation with 5V tolerant I/O

304 pin PBGA package


The SM3110 provides an optimal graphics subsystem for notebook computers. Its unique design embeds rich features and superior performance in a *single chip*.

Embedded Performance and \$avings

The SM3110 integrates an advanced 3D engine, a robust 3 Op 2D accelerator, hardware video playback acceleration with interpolated scaling, independent dual display channels for LCD and CRT, a true color 230 MHz DAC and 4 Mbytes of embedded DRAM optimized for bandwidth availability and usage.

By integrating the optimal memory and functionality required by popular notebook applications, the SM3110 multimedia solution eliminates two or more external components, while attaining highest possible performance. For notebook computers this all adds up to ease of design and valuable savings in PCB space, weight, and subsystem costs.

Moreover, its SmartPowerTM power management system ensures ultra-low power consumption during all operations and adheres to the ACPI goals for 1999 mobile computers which adds significant time to notebook battery life.

3D Engine

- Floating point 3D setup engine
- Trilinear MIPmapping
- Bilinear filtering
- True divide-per-pixel perspective correction
- 16-bit Z-buffer support
- Alpha blending
- Transparency
- Texture blending
- Colored fog
- Specular lighting
- Gouraud shading
- Logical OP, dithering
- Stipple support
- On-chip texture palette
- Supports 8, 16 or 32 bpp
- 1, 2, 4, 8, 16 bit texture map support
- Up to 1M Byte Command/Parameter buffer

Embedded 4M Bytes DRAM

 Embedded DRAM configurable for display buffers, Z-buffers, texture buffers or command buffers

2D Engine

- 3 OP bitBLT engine
- 256 ROP
- Color expansion
- Clipping
- Mono/Color pattern fill
- Opaque rectangle
- Transparent text
- Opaque text
- Color compare for color keying/transparency control
- 8, 16, 24bpp color
- Frame synchronization
- 32KB data FIFO
- 32KB command FIFO
- 256x256 monochrome or 32x32 color hardware cursor

High-performance AGP Interface

- AGP 2.0 interface, 1x and 2x with Sideband addressing
- 32-bit, 66MHz PCI 2.2 interface
- DMA bus mastering
- Linear addressable frame buffer
- Bi-endian data format support
- 3.3V host interface with 5V tolerance

Video Playback Acceleration

- Hardware destination color and chroma key support
- Colorspace conversion
- Motion compensation to ensure >30fps during MPEG/DVD playback
- Bob and weave
- Bi-linear (X, Y) interpolated scaling
- Independently scalable hardware windows for each display channel
- YUV-RGB conversion (4:2:2 -> CLUT8, 555, 565, 888)

Industry Standard Video Input

- ZV port
- I²C support
- Glueless interface to video digitizers
- Real-time 720x525 video capture
- On-the-fly horizontal downscaling

SmartPowerTM = longer battery life

- Ultra-low power consumption achieved with dynamic control during all operations
- Comprehensive support for suspend, standby and hibernation modes
- VESA DPMS 2.0 and DDC2B support for both GreenPC and CRT Plugand-play
- 2.5V internal operation, 3.3V I/O with 5V tolerance

Display Output MyViewTM dual display support

- Allows true multitasking by displaying
 - different images on LCD and CRT simultaneously
 - Independent resolution and refresh rate for each display for optimal display quality

High resolution support up to 1600x1200 CRT

- DSTN up to 1280x1024x16bpp
- CRT up to 1600x1200x16bpp

True color 230MHz palette DAC with gamma correction

- 4, 8, 16, 24, 32bpp support up to 1600x1200 resolution at 85Hz
- DDC2B support

DSTN, TFT flat panel support with gamma correction

- OEM-customizable Hardware Display Icon
- 9, 12, 18, 24 bpp TFT LCD panel support with dithering in resolutions up to 1280x1024 at 85Hz
- 8, 16, 24 bit DSTN with dithering and FRC support in resolutions up to 1280x1024 at 85Hz
- 12, 18, 24 and 36-bit panel interface
- 3,4,6 and 8-bit dithering support
- VGA mode LCD scaling and centering support
- Automatic panel power sequence control
- Fast shutdown for Hot-Battery-Switching
- Configurable default display at power-up
- Two independent hardware cursors

LVDS or TMDS Interface

Digital or Analog TV encoder interface

Maximum display resolutions supported

Mode		Resolution (w pixels x h pixels) x Color Depth (bits/pixel)			
Single Display	CRT	1600 x 1200 x 16			
	CRT or TFT	1280 x 1024 x 24			
	DSTN	1280 x 1024 x 16			
	CRT or LCD	CRT or LCD 1024 x 768 x 32			
Single Display w/NTSC DVD (full-screen)	CRT or LCD	640 x 480 x 24			
MyView [™] Dual Displays	LCD	CRT			
	1280 x 1024 x 16	800 x 600 x 16			
	1280 x 1024 x 8	1600 x 1200 x 8			
	1024 x 768 x 24	800 x 600 x 24			
	1024 x 768 x 16	1024 x 768 x 16			
	1024 x 768 x 8	1600 x 1200 x 8			
	800 x 600 x 32	800 x 600 x 32			

Optimized drivers, BIOS and utilities

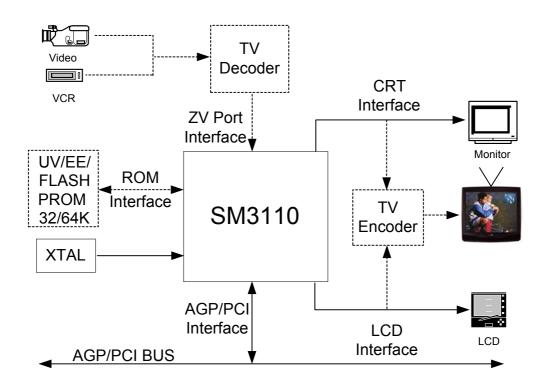
The SM3110 is designed to accelerate Microsoft's DirectX architecture including DirectDraw and Direct3D, plus OpenGL in the Windows environment. Optimized drivers and utilities for Windows 95/98, NT 4.0, and Windows 2000 operating systems back the high performance hardware. An ICD driver for OpenGL is also available.

The SM3110 is supported by the industry standard VESA VBE-compliant VGA BIOS to provide optimum performance and functionality in VGA and VESA extended display modes.

The SM3110 is backed by a strong suite of utilities to help with the customization and update of BIOS. A utility to generate and fine tune the timing configuration of LCD panels in the BIOS is also available.

Software Drivers	Resolutions Supported	No. of colors	
Microsoft Windows 95, 98,	640x480, 720x480, 800x600,	256 or	
2000, NT 4.0, Direct3D, OpenGL	1024x768, 1280x1024, 1600x1200	65536	
	640x480, 720x480, 800x600, 1024x768,	16.8 million	
	1280x1024		
Microsoft WDM/VPE/VPM Driver	Resolution-independent	-	
DVD Playback	800x600	65536	
	640x480	16.8 million	

Trademarks are the property of their respective holders.



Architecture Overview

2 Architecture Overview

2.1 System Configuration

Figure 2-1. Typical SM3110 System Configuration

The SM3110 is an integrated graphics accelerator designed for high performance in a limited space environment, such as a laptop computer. The SM3110 Graphics Accelerator has a number of interfaces to accommodate a variety of configurations and devices.

The host interface is glueless for a direct connection to either AGP or PCI buses. A Zoom Video input port (ZV Port) is provided to accept live video. A single external crystal supplies reference clock timing to three internal independently programmable Phase Locked Loops (PLL). The BIOS ROM port can access a separate graphics ROM or it can be converted for output to a digital TV encoder if the graphics ROM is not used in the system. The display outputs can drive a DSTN or TFT panel and a CRT monitor simultaneously. The data on two displays can be either the same or different, providing a flexible system configuration. Either display port can connect to a TV encoder for TV display. The DAC and clock synthesizers are also built in to minimize the need for external components.

2.2 Internal Configuration

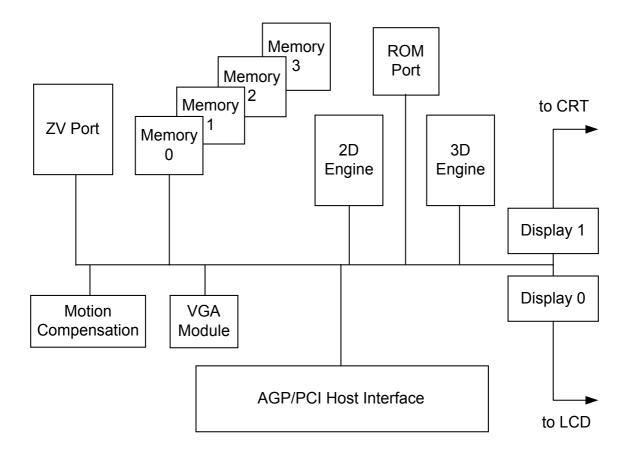
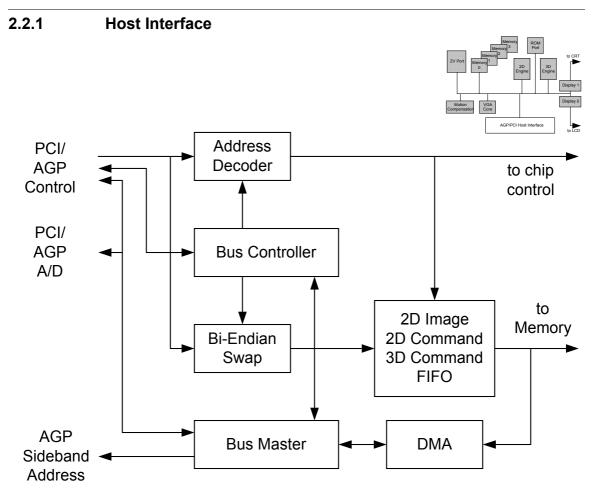



Figure 2-2. SM3110 Internal View

The architecture consists of a host interface, a standard VGA module, a Zoom Video port, a ROM port, four 1MB modules of high performance embedded memory, a 2D engine, a 3D engine, a motion compensation module for accelerating MPEG-2 playback and sophisticated dual display circuitry to support single/simultaneous/dual display on any LCD panel/CRT monitor/TV combination.

The SM3110 has a glueless system interface that is compliant with PCI Local Bus, Revision 2.2 and supports Intel's Accelerated Graphics Port (AGP), Revision 2.0. The system interface can initiate bus transactions as a master and supports 5V and 3.3V signaling and 66 MHz operation. It supports PCI Bus Power Management Interface for ACPI compliant power management. AGP support includes AGP 1x and 2x with Local Texturing, AGP Pipelining, AGP Sideband Addressing, and AGP Frame Mode.

The host interface supports bi-endian data formats. It has 2D and 3D command/data buffers to improve bus throughput. It handles DMA in bus master mode to improve data transfer while leaving the CPU free for other tasks. In AGP configuration the host interface also supports sideband addressing for higher data throughput.

Embedded Memory

2.2.2

AGP/PCI Host In DRAM Module 1 Megabyte Embedded DRAM DRAM Control 3D 2D 3D Read 2D Read Texture Write Write Buffer Buffer Cache Buffer Buffer 3D Read Bus 2D Read Bus 3D Write Bus 2D Write Bus Texture Data

The SM3110 includes 4 megabytes of embedded memory. Four memory modules of 1 megabyte each comprise the internal memory. The modules have separate read and write buffers for the 2D and 3D data buses and one buffer for texture cache. When combined, the interface to internal memory provides over 6.4 gigabytes/second peak memory bandwidth.

The SM3110 claims 128MB of memory space through AGP/PCI configuration. This 128 megabytes is divided into 4 contiguous 32MB address ranges. The lowest 32MB is for little endian data. The next 32MB is reserved. The swap byte within doubleword big endian copy occupies the next 32MB and the swap bytes within word big endian copy occupies the highest 32MB. The last 256KB of each 32MB address range is reserved for 2D and 3D control accesses.

				Big Endian	Big Endian
				(Double-	
		Little Endian	Reserved	Word Swap)	(Word Swap)
Range	Size	Base	Base	Base	Base
Display Memory	31.75MB	00000000H	02000000H	04000000H	0600000H
Control	0.25MB	01FC0000H	03FC0000H	05FC0000H	07FC0000H
Total	32.00MB				

Table 2-1. Local Address Space Allocation

Besides the memory address mentioned above, SM3110 also provides access to register I/O and 128KB memory at 000A0000H address space for compatibility with standard VGA. Larger physical memory available in super VGA configuration is made accessible via an I/O addressed bank offset register.

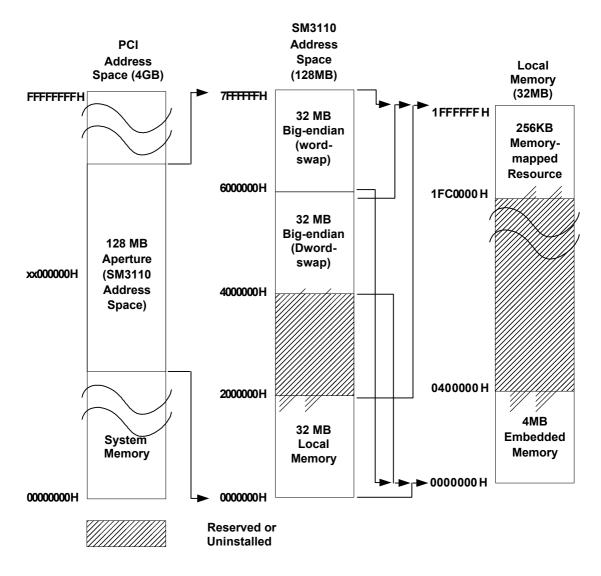
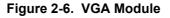



Figure 2-5. Address Space Allocation

2.2.3 VGA Module AGP/PCI Host address MUX data CRTC to memory Graphics Controller Sequencer Attribute Controller Display Subsystem

SM3110 has a VGA core fully compatible with the industry-standard IBM VGA adapter. This module provides direct access logic to the frame buffer and supports all functions performed by the Sequencer and VGA Graphics Controller registers. Standard VESA and VGA display timings are also provided by this module.

2.2.4 2D Rendering Engine

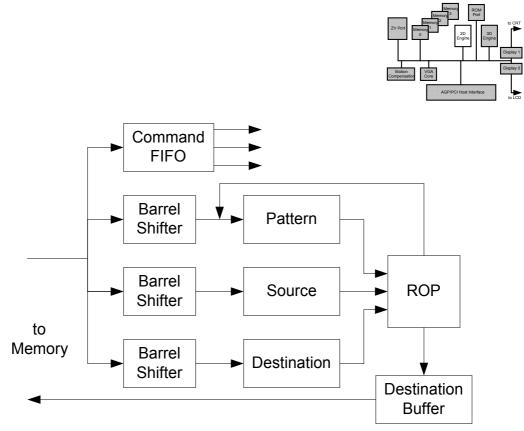


Figure 2-7. 2D BitBLT Engine Internal Data Path

The SM3110 has a high performance 2D bitBLT engine. The 2D engine has a three-operand raster operations (ROP) engine supporting linear and rectangular addressing which is fully Microsoft Windows compatible. It also supports screen-to-screen or memory-to-screen bitBLT with color expansion and transparency control.

The 2D command FIFO receives and decodes commands buffered for the 2D engine. Separate source data, destination data and pattern buffers have their own shifters to align data before they are fed into the ROP unit. A destination buffer stores the results before writing back to the frame buffer for optimized performance in both the 2D engine and the memory interface. This engine also provides transparency, color expansion and color keying during the bitBLT operation.

Architecture Overview

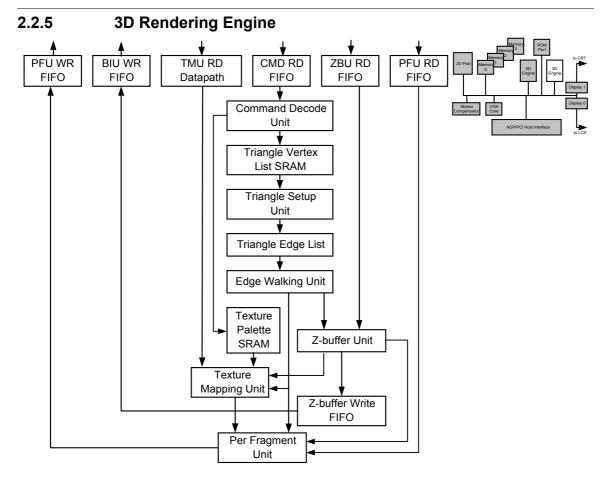


Figure 2-8. 3D Engine Internal Data Path

The SM3110 has a multi-stage 3D rendering engine. It is a one-cycle, bilinear, perspective corrected and two-cycle, trilinear, texture-mapped, perspective corrected MIPmap texture calculation engine. The major components of this rendering engine include a command unit, a triangle setup engine, a texture mapping unit, a texture cache buffer, a texture palette, a per fragment unit and a 16-bit Z-buffer.

The command unit provides command decoding and control of the engine. The triangle setup engine speeds up calculations in the setup process by getting setup information from the host and performing the necessary calculations, freeing the host CPU for other tasks. The texture unit calculates correct texels for each pixel with a bilinear or trilinear MIPmapped filter and perspective correction. The texture palette converts indexed color into 16-bit color. The Z-buffer unit calculates Z value of each new pixel and compares against the Z value in the frame buffer for accurate hidden surface removal. The rendering engine renders each pixel using lighting, fogging, specular highlighting and texturing functions to generate realistic images at a high frame rate.

Display Pipeline 2.2.6 MEMORY Enhanced CRTC 1 AGP/PCI Host In VIDEO CURSOR SCALER FIFO RAM DISPLAY PIXEL CLUT CURSOR MIXING/ FIFO UNPACK GAMMA KEYING OVERLAY CRT DAC CORREC **DISPLAY 1** MEMORY Enhanced CRTC 0 VIDEO CURSOR SCALER RAM FIFO DISPLAY PIXEL DITHER MIXING/ CURSOR CLUT GAMMA FIFO UNPACK LCD KEYING OVERLAY CORREC /FRC VGA LVDS/ PaneLink ICON MEMORY **DISPLAY 0**

Figure 2-9. Display Pipeline

The display subsystem has two independent display pipelines. Each pipeline has its own enhanced CRT controller (CRTC), display FIFO, video FIFO, pixel unpacking circuit, color lookup table (CLUT), color keying circuit and scaler. Display 0 supports all standard VGA functions including all standard VESA display modes. Both displays support extended VESA modes for higher visual quality. The two enhanced CRT controllers can be set to display different data with different resolutions and refresh rates. Display 1 can accept display 0 data through a multiplexing circuit.

Architecture Overview

The last stages of the two pipelines differ somewhat. Display pipeline 0 is optimized for flat panel display with gamma correction. It has a software selectable dithering and Frame Rate Control (FRC) circuit to improve display quality on LCD panels. The same interface can also provide digital data to drive an external LVDS/PaneLink transmitter. It supports 8, 16, 24 and 36 pin interface DSTN panels with dithering and FRC. It also supports a 9, 12, 18, 24 and 36 pin interface TFT panels with dithering, and supports scaling and centering if the display resolution is lower than panel resolution. SM3110 also supports panning if the display resolution is larger than the panel resolution.

Display pipeline 1 integrates a true color 230 MHz palette DAC with gamma correction. It can display 4, 8, 15, 16, 24 and 32 bits per pixel (bpp) with standard VGA, VESA and programmable enhanced display formats up to 1600 by 1200 resolution at 85Hz. VESA Display Power Management Signaling 1.0 (DPMS 1.0) is supported for power management. The SM3110 also supports VESA Display Data Channel 2.0/2.0B (DDC2/DDC2B) for monitor Plug & Play support. The CRT can have display timing and control independent of the flat panel for dual independent displays.

The display subsystem supports two hardware cursors and a hardware icon. The size of both the cursors and icon is 32 pixels by 32 pixels in 8bpp color mode or 256 pixels by 256 pixels in monochrome mode. The cursors can be on both display pipelines, while the icon can only be on the display 0 pipeline.

2.2.7 Video Input

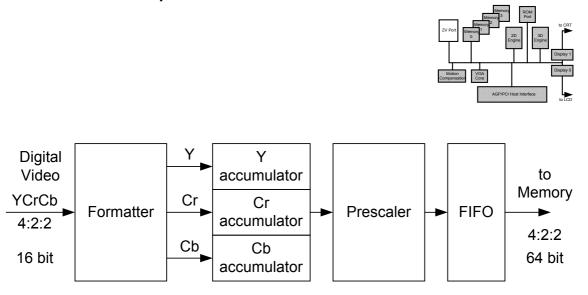


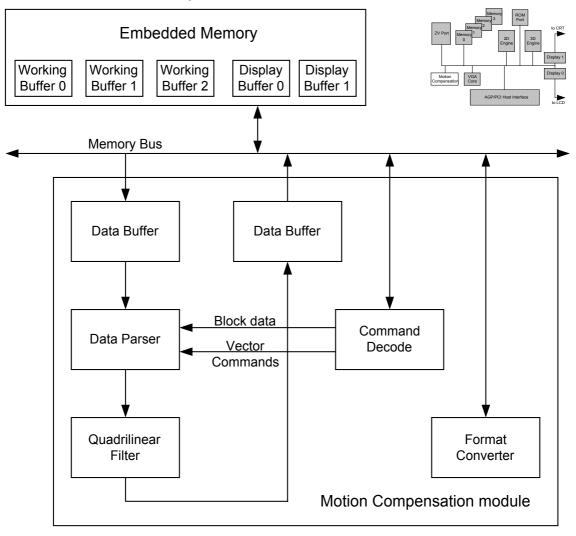
Figure 2-10. Video Input

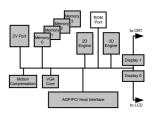
The SM3110 supports PCMCIA Zoomed Video (ZV) Port and direct video input of ITU-R BT. 601 compliant YCrCb 4:2:2 digital video data.

The video data from this port is first pixel-aligned by a formatter and put into an accumulator. When two complete pixels are accumulated, the decimator circuit prescales the data and writes the scaled result into the frame buffer through its own FIFO for video capture.

Architecture Overview

2.2.8 Motion Compensation




Figure 2-11. Motion Compensation Subsystem

The motion compensation subsystem consists of the motion compensation module and five buffers residing in internal memory. The motion compensation module accepts enhanced MPEG-2 video data, parses the macroblock data and applies the quadrilinear filter. The resulting picture is assembled in the working buffers and then converted on the fly from the input 4:2:0 YCrCb format to output 4:2:2 YCrCb format and written to the display buffer.

2.2.9 ROM Port

The SM3110 supports external display BIOS ROM in standard VGA BIOS address 0xC000:0000. The ROM can be EPROM, EEPROM, or flash ROM. The size is either 32KB or 64KB and is set by power-on strapping.

If display BIOS is incorporated in system BIOS, this port can be converted to drive an external digital TV encoder. The image can be programmed to be the same as either the CRT or the panel display.

The ROM port can also be used for any 8-bit peripheral I/O function through the peripheral port at address offset +1FE0000H.

2.3 Additional Features

2.3.1 Power Management

The SM3110 supports PCI Bus Power Management Interface for ACPI compliant power management, VESA Display Power Management Signaling 1.0 (DPMS 1.0) and VESA Display Data Channel 2.0/2.0B (DDC2/DDC2B) for monitor Plug & Play support.

The panel interface, DAC, 2D engine, 3D engine, both scalers and the entire display 1 (CRT) pipeline can be turned off individually to tailor the chip configuration for the lowest power consumption. The SM3110 allows the lowest possible power use dynamically through driver/register-level control for the task at hand.

2.3.2 Board-level Test Functions

The SM3110 has build-in test functions to perform open/short connection testing to help in detecting manufacturing problems. This simple, effective method allows quick detection of any shorted connections or failed soldering. SM3110 also has an isolation test function which allows the board to be tested without response from the SM3110.

2.3.3 Clocks

The SM3110 has 3 internal clock synthesizers which provide a wide range of frequencies to the memory clock and the two display clocks. The inputs of the synthesizers are from a single clock source, which can be an oscillator or a crystal. The typical frequency is 14.31818 MHz.

2.3.4 Inter-IC (I²C) Interface

The SM3110 has 8 programmable bi-directional pins to support I²C and other control functions. Two sets of pins are provided to support DDC2B monitor control and a TV decoder/encoder for video in/TV out functions. More channels can be provided if the need arises.

3.1 Pin Descriptions

3.1.1 AGP/PCI Interface

Note: For detailed pin description, please refer to AGP Spec. 2.0 and PCI Spec. 2.2.

		*Input/	
Signal Name	Pin #	Output	•
AD_STB[1:0]	AC11, AC20	I5/O2	AD bus strobe
AD[31:0]	AC8, Y9, AC9, AA9, AB10,	15/02	AD bus
	Y10, AC10, Y11, AB12, Y13,		
	AC12, AA13, AC13, Y14,		
	AB14, Y15, Y18, AC17, Y19,		
	AB18, AA19, AC18, Y20,		
	AB19, AC21, Y21, AC22, Y23,		
	AB22, AA23, AC23, AB23	15/00	Due Ouwerstand Data Frickle
C/BE[3:0]#	AA12, AC14, AC16, AA20	15/02	Bus Command and Byte Enable
CLKRUN#	AB2	15/02	Clock start request
DEVSEL#	AB16	15/02	Device Select
FRAME#	AA15	I5/O2	Cycle Frame (PCI only)
GNT#	Y5	I5/O2	Bus request Granted
IDSEL	AA11	I5/O2	Initialization Device Select (PCI only)
INTA#	AC1	15/02	Interrupt request A
IRDY#	AC15	15/02	Initiator Ready
TRDY#	Y16	15/02	Target Ready
STOP#	AA16	15/02	Stop
M66EN	AC19	15/02	66MHz Enable
PAR	AA17	15/02	Parity
RBF#	AC4	15/02	Read Buffer Full
REQ#	AC2	15/02	Bus Request
RST#	AA4	I5/O2	System Reset
SB_STB	AC6	I5/O2	SideBand Address Strobe
SBA[7:0]	AA8, AB8, Y8, AC7, Y7, AB6,	I5/O2	SideBand Address Bus
	Y6, AC5		
CLK	Y4	15/02	System Clock
ST[2:0]	AB4, AA5, AC3	I5/O2	Status Bus
AGPCNTL#	AA1	12	AGP Pad Power Control. This is not
			part of AGP bus signal.
AGPVref	Y22	AI	AGP Pad voltage reference input.
			This is part of Silicon Magic's AGP
			power management.

*See Pad Description, Section 3.1.12

3.1.2 Panel Interface

Signal			Alternate	
Name	Pin #	I/O*	Function	Description
FPCLKO	D13	I6/O5		Clock Output to Flat Panel
FP	A14	I6/O5		Frame Pulse for Flat Panel
				Timing Control
LP	A13	I6/O5		Line Pulse for Flat Panel Tim-
				ing Control
FPD[35:29]	E1, E2, E3, E4, D1, D2, C1	I6/O5		Flat Panel Data[35:29]
FPD[28:25]	C2, B1, A1, D4	I6/O5	TEST[3:0]	Flat Panel Data[28:25] or
				Test Selection pins 3-0
FPD[24]	A2			Flat Panel Data[24]
FPD[23:0]	C4, D5, A3, B4, A4, A5,	16/05	VDO[23:0]	Flat Panel Data[23:0] or digital
	A6, C6, D6, A7, B7, D7,			data for TV/TMDS/LVDS
	A8, D8, A9, C9, D9, A10,			
	B10, D10, A11, D11, A12,			
	C12			
FPDE	D14	I6/O5		Flat Panel Display Enable
FPVCC	B13	I6/O3		Flat Panel VCC Control
FPVEE	D12	I6/O3		Flat Panel VEE Control
FPBL	A15	1605		Flat Panel Back Light Control

*See Pad Description, Section 3.1.12

Note: Switching pin function to Alternate Function is controlled by register, except for FPD[28:25], which are switched to test function by TEST# (pin C15).

3.1.3 ROM Interface

Signal			POWER-UP	Alternate	
Name	Pin #	I/O ³	Configuration	Function	Description
ROMA [7:6]	E20, C22	17/04		VDO[7:6]	ROM Address [7:6] ¹
ROMA [5:0]	B23, A23, A22,	I6/O3		VDO[5:0]	ROM Address [5:0] ¹
	D20, A21, B21				
ROMA8	C23	17/04	CONFIG[0]	VDO8	ROM Address [8] ^{1,2}
ROMA9	D22	17/04	CONFIG[1]	VDO9	ROM Address [9] ^{1,2}
ROMA10	E21	17/04	CONFIG[2]	VDO10	ROM Address [10] ^{1,2}
ROMA11	F20	17/04	CONFIG[3]	VDO11	ROM Address [11] ^{1,2}
ROMA12	D23	17/04	32K/64K ROM	VDO12	ROM Address [12] ^{1,2}
ROMA13	E22	17/04	INT/EXT PLL	VDO13	ROM Address [13] ^{1,2}
ROMA14	F21	17/04	INT/EXT	VDO14	ROM Address [14] ^{1,2}
			SCLK		
ROMA15	E23	17/04	AGP/PCI	VDO15	ROM Address [15] ^{1,2}
ROMD[7:4]	C20, A20,	I6/O3			ROM Data [7:4] ¹
	D19, A19				
ROMD3	D18	I6/O3		HSYNC2	ROM Data [3] ¹
ROMD2	A18	I6/O3		VSYNC2	ROM Data [2] ¹
ROMD1	D17	I6/O3		DCLK2	ROM Data [1] ¹
ROMD0	A17	I6/O3		BLANK2#	ROM Data [0] ¹
ROMFW#	D15	I6/O3			Flash ROM Flash Write Command
ROMOE#	D16	I6/O3			ROM Output Enable
ROMXW#	A16	I6/O3			Peripheral I/O Write Command
ROMXR#	B16	I6/O3			Peripheral I/O Read Command

Note: 1. These pins have alternate functions as shown in the Alternate Pad Functions section below.

- 2. These pins have configuration functions at power-up. See the Alternate Pad Functions section below.
- 3 See Pad Description, Section 3.1.12

3.1.4 ZV Port

Signal Name	Pin #	I/O*	Description
ZVPCLK	L21	11	ZV Port Pixel Clock
ZVHREF	T21	17/04	ZV Port Horizontal Refresh (Sync)
ZVVSYNC	T20	17/04	ZV Port Vertical Sync
ZVUV[7:0]	N20, N21, N23, M20, M21, M22, M23, L20	17/04	ZV Port UV Data [7:0]
ZVY[7:0]	T23, R20, R21, R22, R23, P20, P22, P23	17/04	ZV Port Y Data [7:0]
ZVCREF	U23	17/04	For Philips 7110/7111 Chips

*See Pad Description, Section 3.1.12

3.1.5 CRT Interface

Signal Name	Pin #	I/O*	Description
RED	V4	AO	Analog RED Output
GREEN	V3	AO	Analog GREEN Output
BLUE	W1	AO	Analog BLUE Output
RSET	U4	Al	DAC Full-scale Adjustment Resistor
COMP	V1	Al	DAC Compensation Input
DCLK	T1	I6/O3	Pixel Clock
HSYNC	U2	O3	Horizontal Sync
VSYNC	U1	O3	Vertical Sync
BLANK#	T4	O3	Blank

*See Pad Description, Section 3.1.12

3.1.6 Reference Clock Input

Signal Name	Pin #	I/O*	Description
XCLKI	W21	14	Crystal/Oscillator Input
XCLKO	W20	01	Crystal Output

*See Pad Description, Section 3.1.12

3.1.7 Programmable I/O Pins

Signal Name	Pin #	I/O*	Description	
CIO7	K23	I6/O3	User Programmable Input/Output [7]	
CIO6	K22	I6/O3	User Programmable Input/Output [6]	
CIO5	K21	I6/O3	User Programmable Input/Output [5]	
CIO4	K20	I6/O3	User Programmable Input/Output [4]	
CIO3	L23	I6/O3	User Programmable Input/Output [3]/I ² C Data Line	
CIO2	L22	I6/O3	User Programmable Input/Output [2]/I ² C Clock Line	
CIO1	R3	I6/O3	User Programmable Input/Output [1]/DDC2B Data Line	
CIO0	R4	I6/O3	User Programmable Input/Output [0]/DDC2B Clock Line	

*See Pad Description, Section 3.1.12

3.1.8 Testing Pins

Signal Name	Pin #	I/O*	Description
TEST#	C15	11	Test Mode. Not connected in normal use.
IOTST[8:1]	H20, H22, H23, G20, G21, G22, G23, F23	O5	Eight outputs for I/O testing.

*See Pad Description, Section 3.1.12

Note: These pins are for testing use only.

3.1.9 Reserved Pins

Signal Name	Pin #	Description
Reserved[23:1]	R2, R1, J2, J4, H1, H2, H3, H4, G1, G2, G4, F1, F3, F4, J23, J21, J20, AB21, Y17, Y12, AA7, P4, P3, P1, N4, N2, N1, M4, M3, M1, L1, L2, L4, K1, K3, K4, J1	Reserved. Do not connect.

3.1.10 Digital Power and Ground Pins

Signal Name	Pin #	Description
VDD_IO	B2, B5, B8, B11, B15, B18, B22, F2, F22, J22, K2, P2, AA2, AA22, AB5, AB9, AB13, AB17	18 of 3.3V power pins for I/O pads
VDD_C	M2, N22, T2, T22, AB3, AB7, AB11, AB15, AB20	9 of 2.5V power pins for core circuit
GND	C3, C7, C10, C14, C17, D3, D21, G3, H21, J3, K10, K11, K12, K13, K14, L3, L10, L11, L12, L13, L14, M10, M11, M12, M13, M14, N3, N10, N11, N12, N13, N14, P10, P11, P12, P13, P14, P21, T3, U22, AA10, AA14, AA18, AA21, AA3, AA6, AB1	47 Digital ground pins
VDD_R	B3, B6, B9, B12, B14, B17, B19, B20	8 of 2.5V power pins for internal memory modules
GND_R	C5, C8, C11, C13, C16, C18, C19, C21	8 ground pins for internal memory modules
VDD_P	U20	Digital 2.5V for PLL of MCLK, DCLK, and PCLK
GND_P	U21	Digital ground for PLL of MCLK, DCLK, and PCLK
VDD_S	Y2	Digital 2.5V for system clock DLL
GND_S	Y3	Digital ground for system clock PLL

3.1.11 Analog Power and Ground Pins

Signal Name	Pin #	Description	
AVDD_P	W22, V22, V21	3 analog power pins for PLL	
AGND_P	W23, V23, V20	3 analog ground pins for PLL	
AVDD_D	U3, W2	2 analog power pins for DAC	
AGND_D	V2, W3	2 analog ground pins for DAC	
AVDD_S	W4	Analog power for system clock DLL	
AGND_S	Y1	Analog ground for system clock PLL	

3.1.12 Pad Descriptions

I/O	I/O	Internal	Tri-State	Current	Capacitance	Note
Туре		Pull Up		(mA)	(pF)	
11	1				7.337	Clock Pad
12	I				7.346	
13	I				7.346	Schimitt-triggered
I4/O1	I/O	N	N			OSC Pad
I5/O2	I/O	N	N	24		
I6/O3	I/O	N	Y	4	7.754	
17/04	I/O	Y	Y	4	7.755	
17/04	I/O	Y	Y	4	7.754	
I6/O5	I/O	N	Y	8	7.387	Limited Slew Rate
I6/O3	I/O	N	Y	4	7.754	
I6/O5	I/O	N	Y	8	7.387	
O6	0	N	Y	2	7.755	
O3	0	N	Y	4	7.754	
AI	Ana					Analog Signal Pad, Input
AO	Ana					Analog Signal Pad, Out- put
	Pwr					Digital Power, 2.5V
	Pwr					Digital Power, 3.3V
	APwr					Analog Power
	Gnd					Digital Ground, 2.5V
	Gnd					Digital Ground, 3.3V
	AGnd					Analog Ground

3.1.13 Alternate Pad Function

Signal			Alternate	
Name	Pin #	I/O ³	Function	Description
ROMA [7:6]	E20, C22	17/04	VDO[7:6]	Digital Data[7:6] for TV/TMDS/LVDS Encoder ¹
ROMA [5:0]	B23, A23, A22, D20, A21, B21	I6/O3	VDO[5:0]	Digital Data[5:0] for TV/TMDS/LVDS Encoder ¹
ROMA8	C23	17/04	VDO8	Digital Data[8] for TV/TMDS/LVDS Encoder ¹
ROMA9	D22	17/04	VDO9	Digital Data[9] for TV/TMDS/LVDS Encoder ¹
ROMA10	E21	17/04	VDO10	Digital Data[10] for TV/TMDS/LVDS Encoder ¹
ROMA11	F20	17/04	VDO11	Digital Data[11] for TV/TMDS/LVDS Encoder ¹
ROMA12	D23	17/04	VDO12	Digital Data[12] for TV/TMDS/LVDS Encoder ¹
ROMA13	E22	17/04	VDO13	Digital Data[13] for TV/TMDS/LVDS Encoder ¹
ROMA14	F21	17/04	VDO14	Digital Data[14] for TV/TMDS/LVDS Encoder ¹
ROMA15	E23	17/04	VDO15	Digital Data[15] for TV/TMDS/LVDS Encoder ¹
ROMD3	D18	I6/O3	HSYNC2	HSYNC for TV/TMDS/LVDS Encoder ¹
ROMD2	A18	I6/O3	VSYNC2	VSYNC for TV/TMDS/LVDS Encoder ¹
ROMD1	D17	I6/O3	DCLK2	DCLK for TV/TMDS/LVDS Encoder ¹
ROMD0	A17	I6/O3	BLANK2#	BLANK# for TV/TMDS/LVDS Encoder ¹
FPD[28:25]	C2, B1, A1, D4	I6/O5	TEST[3:0]	Test Selection pins 3-0
FPD[23:0]	C4, D5, A3, B4, A4, A5, A6, C6, D6, A7, B7, D7, A8, D8, A9, C9, D9, A10, B10, D10, A11, D11, A12, C12	16/05	VDO[23:0]	Digital data for TV/TMDS/LVDS Encoder ¹
ROMA8	C23			Power-up configuration pin ²
ROMA9	D22			Power-up configuration pin ²
ROMA10	E21			Power-up configuration pin ²
ROMA11	F20	17/04	CONFIG[3]	Power-up configuration pin ²
ROMA12	D23	17/04	32K/64K ROM	Power-up configuration pin ²
ROMA13	E22	17/04	INT/EXT PLL	Power-up configuration pin ²
ROMA14	F21	17/04	INT/EXT SCLK	Power-up configuration pin ²
ROMA15	E23	17/04	AGP/PCI	Power-up configuration pin ²

Note:

- 1. TMDS : Transition Minimized Differential Signaling LVDS : Low Voltage Differential Signaling
- 2. Used for power-on configuration strapping <u>and</u> in TV encoding. For information about enabling the alternate function see the Application Note for each function.
- 3. See Pad Description, Section 3.1.12

3.1.14 Pin Assignment (by pin number)		
	Signal Name	
A1	FPD26	
A2	FPD24	
A3	FPD21	
A4	FPD19	
A5	FPD18	
A6	FPD17	
A7	FPD14	
A8	FPD11	
A9	FPD9	
A10	FPD6	
A11	FPD3	
A12	FPD1	
A13	LP	
A14	FP	
A15	FPBL	
A16	ROMXW#	
A17	ROMD0	
A18	ROMD2	
A19	ROMD4	
A20	ROMD6	
A21	ROMA1	
A22	ROMA3	
A23	ROMA4	
B1	FPD27	
B2	VDD_IO	
B3	VDD_R	
B4	FPD20	
B5	VDD_IO	
B6	VDD_R	
B7	FPD13	
B8	VDD_IO	
B9	VDD_R	
B10	FPD5	
B11	VDD_IO	
B12	VDD_R	
B13	FPVCC	
B14	VDD_R	
B15	VDD_IO	

Pin	Signal Name
B16	ROMXR#
B17	VDD_R
B18	VDD_IO
B19	VDD_R
B20	VDD_R
B21	ROMA0
B22	VDD_IO
B23	ROMA5
C1	FPD29
C2	FPD28
C3	GND
C4	FPD23
C5	GND_R
C6	FPD16
C7	GND
C8	GND_R
C9	FPD8
C10	GND
C11	GND_R
C12	FPD0
C13	GND_R
C14	GND
C15	TEST#
C16	GND_R
C17	GND
C18	GND_R
C19	GND_R
C20	ROMD7
C21	GND_R
C22	ROMA6
C23	ROMA8
D1	FPD31
D2	FPD30
D3	GND
D4	FPD25
D5	FPD22
D6	FPD15
D7	FPD12
D8	FPD10
D9	FPD7
D10	FPD4

Pin	Signal Name
D11	FPD2
D12	FPVEE
D13	FPCLKO
D14	FPDE
D15	ROMFW#
D16	ROMOE#
D17	ROMD1
D18	ROMD3
D19	ROMD5
D20	ROMA2
D21	GND
D22	ROMA9
D23	ROMA12
E1	FPD35
E2	FPD34
E3	FPD33
E4	FPD32
E20	ROMA7
E21	ROMA10
E22	ROMA13
E23	ROMA15
F1	Reserved26
F2	VDD_IO
F3	Reserved25
F4	Reserved24
F20	ROMA11
F21	ROMA14
F22	VDD_IO
F23	IOTST1
G1	Reserved29
G2	Reserved28
G3	GND
G4	Reserved27
G20	IOTST5
G21	IOTST4
G22	IOTST3
G23	IOTST2
H1	Reserved33
H2	Reserved32
H3	Reserved31
H4	Reserved30

Pin	Signal Name
H20	IOTST8
H21	GND
H22	IOTST7
H23	IOTST6
J1	Reserved1
J2	Reserved35
J3	GND
J4	Reserved34
J20	Reserved21
J21	Reserved22
J22	VDD_IO
J23	Reserved23
K1	Reserved4
K2	VDD_IO
K3	Reserved3
K4	Reserved2
K10	GND
K11	GND
K12	GND
K13	GND
K14	GND
K20	CIO4
K21	CIO5
K22	CIO6
K23	CIO7
L1	Reserved7
L2	Reserved6
L3	GND
L4	Reserved5
L10	GND
L11	GND
L12	GND
L13	GND
L14	GND
L20	ZVUV0
L21	ZVPCLK
L22	CIO2
L23	CIO3
M1	Reserved8
M2	VDD_C

Pin	Signal Name
M3	Reserved9
M4	Reserved10
M10	GND
M11	GND
M12	GND
M13	GND
M14	GND
M20	ZVUV4
M21	ZVUV3
M22	ZVUV2
M23	ZVUV1
N1	Reserved11
N2	Reserved12
N3	GND
N4	Reserved13
N10	GND
N11	GND
N12	GND
N13	GND
N14	GND
N20	ZVUV7
N21	ZVUV6
N22	VDD_C
N23	ZVUV5
P1	Reserved14
P2	VDD_IO
P3	Reserved15
P4	Reserved16
P10	GND
P11	GND
P12	GND
P13	GND
P14	GND
P20	ZVY2
P21	GND
P22	ZVY1
P23	ZVY0
R1	Reserved36
R2	Reserved37
R3	CIO1

Pin	Signal Name
R4	CIO0
R20	ZVY6
R21	ZVY5
R22	ZVY4
R23	ZVY3
T1	DCLK
T1 T2	VDD_C
Т3	GND
T4	BLANK#
T20	ZVVSYNC
T21	ZVHREF
T22	VDD_C
T23	ZVY7
U1	VSYNC
U2	HSYNC
U3	AVDD_D
U4	RSET
U20	VDD_P
U21	GND_P
U22	GND
U23	ZVCREF
V1	COMP
V2	AGND_D
V3	GREEN
V4	RED
V20	AGND_P
V21	AVDD_P
V22	AVDD_P
V23	AGND_P
W1	BLUE
W2	AVDD_D
W3	AGND_D
W4	AVDD_S
W20	XCLKO
W21	XCLKI
W22	AVDD_P
W23	AGND_P
Y1	AGND_S
Y2	VDD_S
Y3	GND_S

Pin Signal Nar	
	ne
Y4 CLK	
Y5 GNT#	
Y6 SBA1	
Y7 SBA3	
Y8 SBA5	
Y9 AD30	
Y10 AD26	
Y11 AD24	
Y12 Reserved1	8
Y13 AD22	
Y14 AD18	
Y15 AD16	
Y16 TRDY#	
Y17 Reserved1	9
Y18 AD15	
Y19 AD13	
Y20 AD9	
Y21 AD6	
Y22 AGPVref	
Y23 AD4	
AA1 AGPCNTL#	¥
AA2 VDD_IO	
AA3 GND	
AA4 RST#	
AA5 ST1	
AA6 GND	
AA7 Reserved1	7
AA8 SBA7	
AA9 AD28	
AA10 GND	
AA11 IDSEL	
AA12 C/BE3#	
AA13 AD20	
AA14 GND	
AA15 FRAME#	
AA16 STOP#	
AA17 PAR	
AA18 GND	
AA19 AD11	
AA20 C/BE0#	

Pin	Signal Name
AA21	GND
AA22	VDD_IO
AA23	AD2
AB1	GND
AB2	CLKRUN#
AB3	VDD_C
AB4	ST2
AB5	VDD_IO
AB6	SBA2
AB7	VDD_C
AB8	SBA6
AB9	VDD_IO
AB10	AD27
AB11	VDD_C
AB12	AD23
AB13	VDD_IO
AB14	AD17
AB15	VDD_C
AB16	DEVSEL#
AB17	VDD_IO
AB18	AD12
AB19	AD8
AB20	VDD_C
AB21	Reserved20
AB22	AD3
AB23	AD0
AC1	INTA#
AC2	REQ#
AC3	ST0
AC4	RBF#
AC5	SBA0
AC6	SB_STB
AC7	SBA4
AC8	AD31
AC9	AD29
AC10	AD25
AC11	AD_STB1
AC12	AD21
AC13	AD19
AC14	C/BE2#

Pin	Signal Name
AC15	IRDY#
AC16	C/BE1#
AC17	AD14
AC18	AD10
AC19	M66EN
AC20	AD_STB0
AC21	AD7
AC22	AD5
AC23	AD1

3.1.15	Pin Assign- (by signal name)
	Signal Name
	AD_STB0
	AD_STB1
AB23	AD0
AC23	
AA23	
AB22	
Y23	AD4
AC22	AD5
Y21	AD6
AC21	
AB19	
	AD9
AC18	AD10
AA19	AD11
AB18	AD12
Y19	AD13
	AD14
Y18	AD15
Y15	AD16
AB14	AD17
Y14	AD18
AC13	AD19
AA13	AD20
AC12	AD21
Y13	AD22
AB12	AD23
Y11	AD24
AC10	AD25
Y10	AD26
AB10	AD27
AA9	AD28
AC9	AD29
Y9	AD30
AC8	AD31
V2	AGND_D
W3	AGND_D
V20	AGND_P
V23	AGND_P
W23	AGND_P
Y1	AGND_S

Pin	Signal Name
	AGPCNTL#
Y22	AGPVref
U3	AVDD_D
W2	AVDD_D
V21	AVDD_P
V22	AVDD_P
W22	AVDD_P
W4	AVDD_S
T4	BLANK#
W1	BLUE
AA20	C/BE0#
AC16	C/BE1#
AC14	C/BE2#
AA12	C/BE3#
R4	CIO0
R3	CIO1
L22	CIO2
L23	CIO3
K20	CIO4
K21	CIO5
K22	CIO6
K23	CIO7
Y4	CLK
AB2	CLKRUN#
V1	COMP
T1	DCLK
AB16	DEVSEL#
A14	FP
A15	FPBL
D13	FPCLKO
C12	FPD0
A12	FPD1
D11	FPD2
A11	FPD3
D10	FPD4
B10	FPD5
A10	FPD6
D9	FPD7
<u>C9</u>	FPD8
A9	FPD9
D8	FPD10
A8	FPD11

Pin	Signal Name
D7	FPD12
B7	FPD13
A7	FPD14
D6	FPD15
C6	FPD16
A6	FPD17
A5	FPD18
A4	FPD19
B4	FPD20
A3	FPD21
D5	FPD22
C4	FPD23
A2	FPD24
D4	FPD25
A1	FPD26
B1	FPD27
C2	FPD28
C1	FPD29
D2	FPD30
D1	FPD31
E4	FPD32
E3	FPD33
E2	FPD34
E1	FPD35
D14	FPDE
B13	FPVCC
D12	FPVEE
AA15	FRAME#
C3	GND
C7	GND
C10	GND
C14	GND
C17	GND
D3	GND
D21	GND
G3	GND
H21	GND
J3	GND
K10	GND
K11	GND
K12	GND
K13	GND

SM3110 Technical Reference Manual **Preliminary**

Pin	Signal Name
K14	GND
L3	GND
L10	GND
L11	GND
L12	GND
L13	GND
L14	GND
M10	GND
M11	GND
M12	GND
M13	GND
M14	GND
N3	GND
N10	GND
N11	GND
N12	GND
N13	GND
N14	GND
P10	GND
P11	GND
P12	GND
P13	GND
P14	GND
P21	GND
T3	GND
U22	GND
AA3	GND
AA6	GND
AA10	GND
AA14	GND
AA18	GND
AA21	GND
AB1	GND
U21	GND_P
C5	GND_R
C8	GND_R
C11	GND_R
C13	GND_R
C16	GND_R
C18	GND_R
C19	GND_R
C21	GND_R

Pin	Signal Name
Y3	GND_S
Y5	GNT#
V3	GREEN
U2	HSYNC
AA11	IDSEL
AC1	INTA#
F23	IOTST1
G23	IOTST2
G22	IOTST3
G21	IOTST4
G20	IOTST5
H23	IOTST6
H22	IOTST7
H20	IOTST8
AC15	IRDY#
A13	LP
AC19	M66EN
AA17	PAR
AC4	RBF#
V4	RED
AC2	REQ#
J1	Reserved1
K4	Reserved2
K3	Reserved3
K1	Reserved4
L4	Reserved5
L2	Reserved6
L1	Reserved7
M1	Reserved8
M3	Reserved9
M4	Reserved10
N1	Reserved11
N2	Reserved12
N4	Reserved13
P1	Reserved14
P3	Reserved15
P4	Reserved16
AA7	Reserved17
Y12	Reserved18
Y17	Reserved19
AB21	Reserved20
J20	Reserved21

Pin	Signal Name
J21	Reserved22
J23	Reserved23
F4	Reserved24
F3	Reserved25
F1	Reserved26
G4	Reserved27
G2	Reserved28
G1	Reserved29
H4	Reserved30
H3	Reserved31
H2	Reserved32
H1	Reserved33
J4	Reserved34
J2	Reserved35
R1	Reserved36
R2	Reserved37
B21	ROMA0
A21	ROMA1
D20	ROMA2
A22	ROMA3
A23	ROMA4
B23	ROMA5
C22	ROMA6
E20	ROMA7
C23	ROMA8
D22	ROMA9
E21	ROMA10
F20	ROMA11
D23	ROMA12
E22	ROMA13
F21	ROMA14
E23	ROMA15
A17	ROMD0
D17	ROMD1
A18	ROMD2
D18	ROMD3
A19	ROMD4
D19	ROMD5
A20	ROMD6
C20	ROMD7
D15	ROMFW#
D16	ROMOE#

Preliminary SM3110 Technical Reference Manual

Pin	Signal Name
B16	ROMXR#
A16	ROMXW#
U4	RSET
AA4	RST#
AC6	SB_STB
AC5	SBA0
Y6	SBA1
AB6	SBA2
Y7	SBA3
AC7	SBA4
Y8	SBA5
AB8	SBA6
AA8	SBA7
AC3	ST0
AA5	ST1
AB4	ST2
AA16	STOP#
C15	TEST#
Y16	TRDY#
M2	VDD_C
N22	VDD_C
T2	VDD_C
T22	VDD_C VDD_C
AB3	VDD_C
AB7	VDD_C VDD_C
AB11	VDD_C
AB15	VDD_C
AB20	VDD_C
B2	VDD_IO
B5	VDD_IO
B8	VDD_IO
B11	VDD_IO
B15	VDD_IO
B18	VDD_IO
B22	VDD_IO
F2	VDD_IO
F22	VDD_IO
J22	VDD_IO
K2	VDD_IO
P2	VDD_IO
AA2	VDD_IO
AA22	VDD_IO

Pin	Signal Name
AB5	VDD_IO
AB9	VDD_IO
AB13	VDD_IO
AB17	VDD_IO
U20	VDD_P
B3	VDD_R
B6	VDD_R
B9	VDD_R
B12	VDD_R
B14	VDD_R
B17	VDD_R
B19	VDD_R
B20	VDD_R
Y2	VDD_S
U1	VSYNC
W21	XCLKI
W20	XCLKO
U23	ZVCREF
T21	ZVHREF
L21	ZVPCLK
L20	ZVUV0
M23	ZVUV1
M22	ZVUV2
M21	ZVUV3
M20	ZVUV4
N23	ZVUV5
N21	ZVUV6
N20	ZVUV7
T20	ZVVSYNC
P23	ZVY0
P22	ZVY1
P20	ZVY2
R23	ZVY3
R22	ZVY4
R21	ZVY5
R20	ZVY6
T23	ZVY7

Figure 3-1. Top View

I	1	2	3	4	5	6	7	8	9	10	11
A	301	298	294	291	289	288	283	279	276	271	267
	FPD26	FPD24	FPD21	FPD19	FPD18	FPD17	FPD14	FPD11	FPD9	FPD6	FPD3
в	303	302	299	292	290	287	282	278	275	270	266
	FPD27	VDD_IO	VDD_R	FPD20	VDD_IO	VDD_R	FPD13	VDD_IO	VDD_R	FPD5	VDD_IO
с	1	304	296	297	293	286	284	281	274	272	269
	FPD29	FPD28	GND	FPD23	GND_R	FPD16	GND	GND_R	FPD8	GND	GND_R
D	4	3	2	300	295	285	280	277	273	268	265
	FPD31	FPD30	GND	FPD25	FPD22	FPD15	FPD12	FPD10	FPD7	FPD4	FPD2
Е	8	7	6	5							
	FPD35	FPD34	FPD33	FPD32							
ĥ	11	12	10	9							
	Reserved26	VDD_IO	Reserved25	Reserved24							
G	15	14	16	13							
	Reserved29	Reserved28	GND	Reserved27							
н	20	19	18	17							
	Reserved33	Reserved32	Reserved31	Reserved30							
J		23	22	21							
	Reserved1	Reserved35	GND	Reserved34	ļ						
к	28	26	27	25							
	Reserved4	VDD_IO	Reserved3	Reserved2	-					GND	GND
L	32	30	31	29							
	Reserved7	Reserved6	GND	Reserved5						GND	GND
м	33	35	34	36						010	010
N	Reserved8	VDD_C 38	Reserved9	Reserved10						GND	GND
N			39 GND	40 Reserved13						GND	GND
Р	Reserved11 41	Reserved12 44	42	43	-					GND	GND
·	Reserved14	VDD_IO	Reserved15	Reserved16						GND	GND
R	45	46	47	48	-					GND	GND
ĸ	Reserved36	Reserved37	CIO1	CIOD							
т	50	49	52	51	-						
	DCLK	VDD_C	GND	BLANK#							
U	53	54	55	56							
-	VSYNC	HSYNC	AVDD_D	RSET							
v	57	58	60	59	ł						
	COMP	AGND_D	GREEN	RED							
w	61	62	63	64	ł						
	BLUE	AVDD_D	AGND_D	AVDD_S	İ						
Y	65	67	68	71	79	85	89	93	97	101	105
	AGND_S	VDD_S	GND_S	CLK	GNT#	SBA1	SBA3	SBA5	AD30	AD26	AD24
AA	66	70	73	76	83	87	91	94	99	104	106
	AGPCNTL#	VDD_IO	GND	RST#	ST1	GND	Reserved17	SBA7	AD28	GND	IDSEL
AB	69	74	77	80	81	86	90	95	98	102	107
	GND	CLKRUN#	VDD_C	ST2	VDD_IO	SBA2	VDD_C	SBA6	VDD_IO	AD27	VDD_C
	72	75	78	82	84	88	92	96	100	103	108
AC	12										
AC	INTA#	REQ#	STO	RBF#	SBA0	SB_STB	SBA4	AD31	AD29	AD25	AD_STB1

12	13	14	15	16	17	18	19	20	21	22	23	1
263	258	253	250	246	241	238	235	232	227	224	223	A
FPD1	LP	FP	FPBL	ROMXW#	ROMD0	ROMD2	ROMD4	ROMD6	ROMA1	ROMA3	ROMA4	
264	256	257	254	244	245	242	236	231	229	228	222	в
VDD_R	FPVCC	VDD_R	VDD_IO	ROMXR#	VDD_R	VDD_IO	VDD_R	VDD_R	ROMA0	VDD_IO	ROMA5	
261	262	260	249	251	248	239	234	230	225	221	218	c
FPD0	GND_R	GND	TEST#	GND_R	GND	GND_R	GND_R	ROMD7	GND_R	ROMA6	ROMA8	
259	255	252	247	243	240	237	233	226	219	217	214	D
FPVEE	FPCLKO	FPDE	ROMFW#	ROMOE#	ROMD1	ROMD3	ROMD5	ROMA2	GND	ROMA9	ROMA12	
			-					220	216	213	210	E
								ROMA7	ROMA10	ROMA13	ROMA15	
								215	211	212	209	F
								ROMA11	ROMA14	VDD_IO	IOTST1	
								205	206	207	208	G
								IOTST5	IOTST4	IOTST3	IOTST2	
								201	203	202	204	н
								IOTST8	GND	IOTST7	IOTST6	
								197	199	198	200	J
								Reserved21	Reserved22	VDD_IO	Reserved23	
			T					193	194	195	196	к
GND	GND	GND						CIO4	CIO5	CIO6	CIO7	
			-					189	190	191	192	L
GND	GND	GND						ZVUV0	ZVPCLK	CIO2	CIO3	
			-					185	186	187	188	м
GND	GND	GND						ZVUV4	ZVUV3	ZVUV2	ZVUV1	
		-	-					181	183	182	184	N
GND	GND	GND						ZVUV7	ZVUV6	VDD_C	ZVUV5	
-			-					177	178	179	180	Р
GND	GND	GND						ZVY2	GND	ZVY1	ZVY0	
0.10	0.10	010						173	174	175	176	R
								ZVY6	ZVY5	ZVY4	ZVY3	
								169	170	171	172	т
								ZVVSYNC	ZVHREF	VDD_C	ZVY7	
								165	166	167	168	U
								VDD_P	GND_P	GND	ZVCREF	
								163	164	162	161	v
								AGND_P	AVDD_P	AVDD P	AGND P	.
								160	159	158	157	w
								XCLKO	XCLKI	AVDD_P	AGND P	
109	116	120	123	128	134	137	142	150	155	156	154	Y
Reserved18	AD22	AD18	AD16	TRDY#	Reserved19	AD15	AD13	AD9	AD6	AGPVref	AD4	
110	115	119	122	127	131	135	141	146	147	152	153	AA
C/BE3#	AD20	GND	FRAME#	STOP#	PAR	GND	AD11	C/BE0#	GND	VDD_IO	AD2	
111	114	118	125	126	132	133	139	143	145	149	151	AB
AD23	VDD_IO	AD17	VDD_C	DEVSEL#	VDD_IO	AD12	AD8	VDD_C	Reserved20	AD3	AD0	_
112	113	117	121	124	129	130	136	138	140	144	148	AC
AD21	AD19	C/BE2#	IRDY#	C/BE1#	AD14	AD10	M66EN	AD_STB0	AD7	AD5	AD1	
12	13	14	15	16	17	18	19	20	21	22	23	<u> </u>
12	13	14	19	10	I ''	10	1 19	20	21		23	1

3.2 Electrical Specifications

3.2.1 Maximum DC Specifications

Table 3-1. Absolute Maximum Specifications

Symbol	Parameter	Minimum	Maximum	Unit	Notes
VDD_IO	Power Supply, I/O		5.5	V	1
VDD_C, VDD_S, VDD_P, VDD_R, AVDD_S, ADD_D, AVDD_P	Power Supply, all other		5.5	V	1
V _{PIN}	Voltage on all signal pins	-0.5	VDD_IO+0.5	V	1
I _{LU}	Injection Current (latch-up)		100	mA	1
P _{AM}	Operating Power Dissipation		4.0	W	1
T _{STG}	Storage Temperature	-65	150	°C	1

Notes:

1. Exposure at or above the absolute maximum conditions may damage devices and cause system malfunction.

3.2.2 Normal Operating DC Specifications

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VDD_IO	Supply Voltage, I/O	3.15	3.3	3.45	V
VDD_C, VDD_R, VDD_S, VDD_P, AVDD_D, AVDD_P, AVDD_S	Supply Voltage, all other	2.375	2.5	2.625	V
AGPVREF	AGP Bus Reference Voltage		1.4		V
C _{IN}	Input Capacitance		10		pF
C _{OUT}	Output Capacitance		10		pF
T _A	Ambient Temperature	0	25	70	°C

Table 3-2. Normal Operating Specifications

3.2.3 DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V _{IH}	Input High Voltage	0.65xVDD_IO			V
V _{IL}	Input Low Voltage		0	0.35xVDD_IO	V
I _{IH}	Input High Current		4		μΑ
IIL	Input Low Current		4		μΑ
I _{OZ}	Tri-state Output Leakage Current		4		μΑ
V _{OH}	Output High Voltage	2.4			V
V _{OL}	Output Low Voltage			0.4	V
IDDO3.3V	Supply Current - Operating		35		mA
IDDO2.5V	Supply Current - Operating		650		mA
IDDC3.3V	Supply Current - CRT only		25		mA
IDDC2.5V	Supply Current - CRT only		500		mΑ
IDDP3.3V	Supply Current - Flat Panel only		35		mΑ
IDDP2.5V	Supply Current - Flat Panel only		500		mΑ
IDDS3.3V	Supply Current - Suspend Mode		10		mA
IDDS2.5V	Supply Current - Suspend Mode		10		mΑ

Table 3-3. DC Characteristics

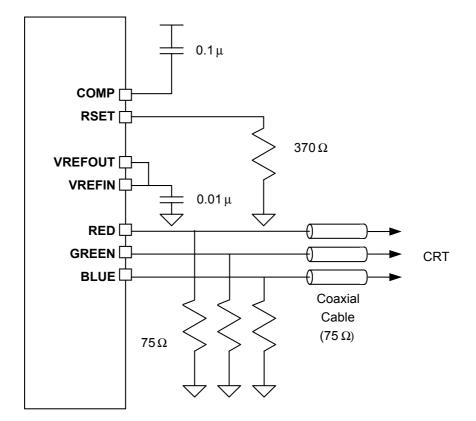


Figure 3-2. DAC Test Set-up

Table 3-4.	DAC	Characteristics
------------	-----	-----------------

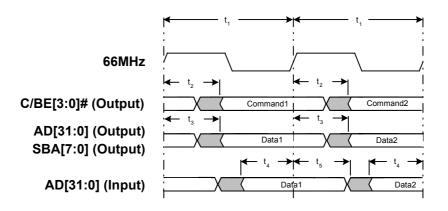
Parameter	Minimum	Typical	Maximum	Unit	Condition
DAC Output Speed			230	MHz	
Full Scale Current		16		mA	
Output Voltage Range		1.0		V	
DAC Resolution		8		bits	
Integral non-linearity error		0.5	1	LSB	$AVDD_D = 2.5V$
Differential non-linearity error		0.5	1	LSB	$AVDD_D = 2.5V$
Gain error			5	%	
DAC to DAC matching		1	2.5	%	
	DAC Output Speed Full Scale Current Output Voltage Range DAC Resolution Integral non-linearity error Differential non-linearity error Gain error	DAC Output Speed Full Scale Current Output Voltage Range DAC Resolution Integral non-linearity error Differential non-linearity error Gain error	DAC Output Speed16Full Scale Current16Output Voltage Range1.0DAC Resolution8Integral non-linearity error0.5Differential non-linearity error0.5Gain error0.5	DAC Output Speed230Full Scale Current16Output Voltage Range1.0DAC Resolution8Integral non-linearity error0.5Differential non-linearity error0.5Gain error5	DAC Output Speed230MHzFull Scale Current16mAOutput Voltage Range1.0VDAC Resolution8bitsIntegral non-linearity error0.51LSBDifferential non-linearity error0.51LSBGain error5%

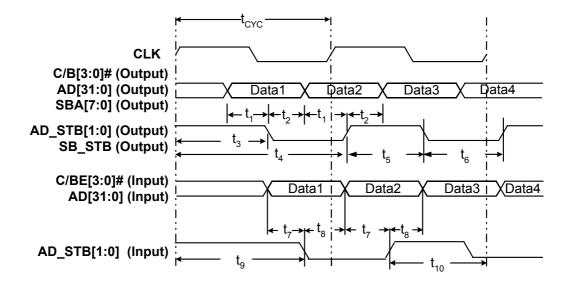
Note: AVDD_D = 2.5V; RL = 37.5Ω, CL = 10pF; RSET = 370Ω; TEMP = 75°C

3.2.4 AC Timing

3.2.4.1 AGP Timing

AGP timings are specified by two sets of parameters, one corresponding to the AGP 1x operation and the second corresponding to the optional AGP 2x transfer mode operation. The AGP 2x specifications are in addition to the AGP 1x specifications. The AGP 1x specifications still apply to all outer loop control signals during the AGP 2x operations. See below for the 1x and 2x timing diagrams.




Figure 3-3. AGP 1x Timing

Symbol	Parameter	Min	Мах	Units	Notes
Clock:				•	•
t ₁	CLK cycle time	15	30	ns	
Output Signa	ls:			•	•
t ₂	CLK to control signal valid delay	10	5.5	ns	1
t ₃	CLK to data valid delay	10	6.0	ns	1
	Output slew rate	1.5	4	V/ns	3
Input Signals	:				•
t ₄	Data setup time to CLK	5.5		ns	
t ₅	Data hold time to CLK	0		ns	

Notes:

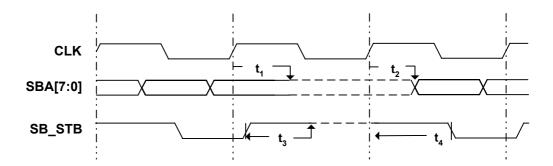
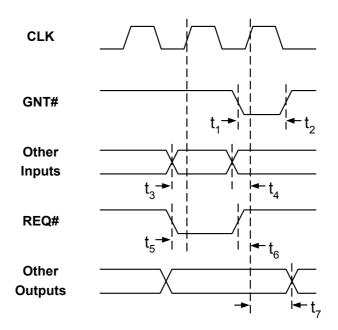
- 1. Test Conditions: Output delays into a capacitative load of 10 pF.
- 2. In AGP 2x mode, t_3 , t_4 and t_5 values for the AD, C/BE# and SBA signals are superseded by the A.G.P. parameters t_1 , t_2 , t_5 and t_6 in Figure 3.
- 3. The output slew rate applies to all output signals.

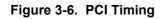
Table 3-7.	AGP	2x Timing	Parameters
------------	-----	-----------	------------

Symbol	Parameter	Min	Max	Units	Notes
Output Sigr	nals:	1 1			1
t ₁	Output Data valid before strobe	1.7		ns	1,2,3
t ₂	Output Data valid after strobe	1.9		ns	1,2,3
t ₃	CLK to output strobe falling	2	12	ns	
t ₄	CLK to output strobe rising		20	ns	
t ₅	Strobe width high	5.0		ns	
t ₆	Strobe width low	5.0		ns	
t ₇	Input Data to strobe setup time	1		ns	1,2
t ₈	Strobe to input data hold time	1		ns	1,2
t ₉	Input strobe hold time from CLK	1		ns	
t ₁₀	Input strobe setup time to CLK	6		ns	
t _{CYC}	CLK cycle time	15	30	ns	

Notes:

- 1. For C/BE[3:2]# and AD[31:16], use AS_STB1 as the reference signal for timing.
- 2. For C/BE[1:0]# and AD[15:0], use AS_STB0 as the reference signal for timing.
- 3. For SBA[7:0], use SB_STB as the reference signal for timing.


Figure 3-5. Strobe/Data Turnaround Timing

Symbol	Parameter	Min	Max	Units	Notes
t ₁	Active to Float Delay	1	12	ns	
t ₂	Float to Active Delay	-1	9	ns	
t ₃	Strobe rising edge to strobe float delay	6	10	ns	
t ₄	Strobe active to strobe falling edge setup	6	10	ns	

3.2.4.2 PCI Timing

Table 3-9.	PCI Timing	J
------------	------------	---

Symbol	Parameter	Minimum	Maximum	Units
t ₁	Setup time of GNT# to CLK	10		ns
t ₂	Hold time of GNT# to CLK	0		ns
t ₃	Setup time Other Inputs	7		ns
t ₄	Hold time of other Inputs	0		ns
t ₅	Setup time REQ#	12		ns
t ₆	Hold time REQ#	0		ns
t ₇	Setup time Other Output	2		ns

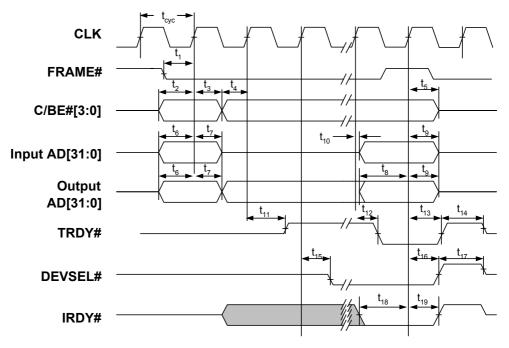


Figure 3-7. PCI Timing

Table 3-1	0. PCI	Timing
-----------	--------	--------

Symbol	Parameter	Minimum	Maximum	Units
t ₁	FRAME# Setup to CLK	7		ns
t ₂	C/BE#[3:0] (Bus CMD) setup to CLK	7		ns
t ₃	C/BE#[31:0] (Bus CMD) hold from CLK	0		ns
t ₄	C/BE#[3:0] (Byte Enable) setup to CLK	7		ns
t ₅	C/BE#[3:0] (Byte Enable) hold from CLK	0		ns
t ₆	AD[31:0] (Address) setup to CLK	7		ns
t ₇	AD[31:0] (Address) hold from CLK	0		ns
t ₈	AD[31:0] (Data) setup to CLK	7		ns
t ₉	AD[31:0] (Data) hold from CLK	0		ns
t ₁₀	AD[31:0] (Data) valid from CLK	2	11	ns
t ₁₁	TRDY# High Z to high from CLK	1		t _{cyc}
t ₁₂	TRDY# active from CLK	2	11	ns
t ₁₃	TRDY# inactive from CLK	2	11	ns
t ₁₄	TRDY# high from before High Z	1		t _{cyc}
t ₁₅	DEVSEL# active from CLK	2		ns
t ₁₆	DEVSEL# inactive from CLK	2	11	ns
t ₁₇	DEVSEL# high before High Z	1		t _{cyc}
t ₁₈	IRDY# setup to CLK	7		ns
t ₁₉	IRDY# hold from CLK	0		ns

3.2.4.3 PCI Clock Timing

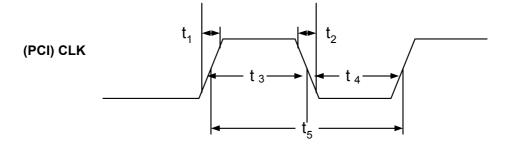
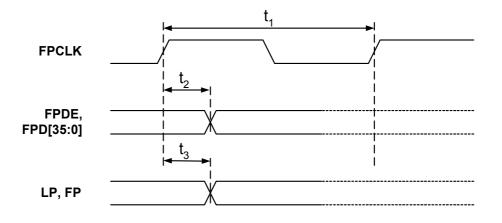
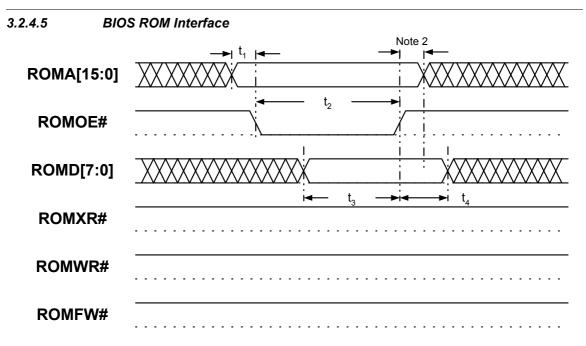




Figure 3-8. PCI Clock Timing

Symbol	Parameter	Minimum	Maximum	Units
t ₁	Rise time (0.3 VDD_IO to 0.5VDD_IO)	0.16	0.69	ns
t ₂	Fall time (90% to 10%)	0.16	0.69	ns
t ₃	High pulse width	11		ns
t ₄	Low pulse width	11		ns
t ₅	Period	30		ns

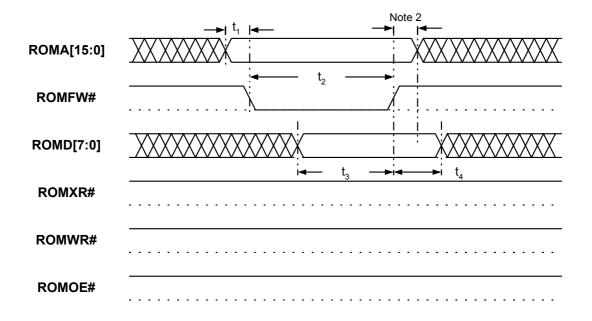
3.2.4.4 Panel Interface



Symbol	Parameters	Min	Max	Units
t ₁	FPCLK cycle time	7	100	MHz
t ₂	FPDE and FPD[35:0] output valid delay	5	10	ns
t ₃	LP and FP output valid delay	5	10	ns

Note: Polarity of FPCLK, LP, FP and FPDATA are all register programmable. This figure shows them all in normal (non-inverted) setting.

Figure 3-10. BIOS ROM Read Cycle Timing


Table 3-13. BIOS ROM Read Cycle Timing Parameters

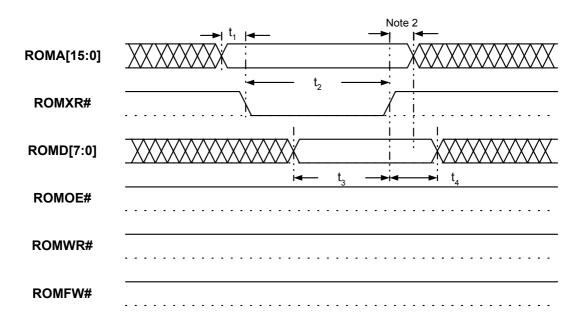
Symbol	Parameters	Min	Max	Units	Note
t ₁	Address setup time	1	2	AGP/PCI CLK	1
t ₂	Output Enable Width	5	12	AGP/PCI CLK	1
t ₃	Data to Output Enable Setup Time	10		ns	
t ₄	Data to Output Enable Hold Time	10		ns	

Note: 1. Values are register-programmable.

2. ROMA to ROMOE# hold time is fixed in one AGP/PCI bus clock cycle

Figure 3-11. BIOS ROM Write Cycle Timing

Table 3-14.	BIOS ROM	Write Cycle	Timing Parameter	S
-------------	-----------------	-------------	------------------	---

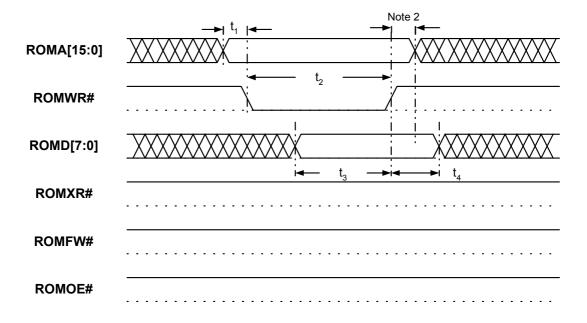

Symbol	Parameters	Min	Max	Units	Note
t ₁	Address setup time	1	2	AGP/PCI CLK	1
t ₂	Flash Write Width	5	12	AGP/PCI CLK	1
t ₃	Data to Flash Write Setup Time	5		ns	
t ₄	Data to Flash Write Hold Time	10		ns	

Note:

1. Values are register-programmable.

2. ROMA to ROMFW# hold time is fixed in one AGP/PCI bus clock cycle

Figure 3-12. Peripheral I/O Read Cycle Timing


Symbol	Parameters	Min	Мах	Units	Note
t ₁	Address setup width	1	2	AGP/PCI CLK	1
t ₂	Read Command Width	5	12	AGP/PCI CLK	1
t ₃	Data to Read Command Setup Time	10		ns	
t ₄	Data to Read Command Hold Time	5		ns	

Note:

1. Values are register-programmable.

2. ROMA to ROMXR# hold time is fixed in one AGP/PCI bus clock cycle

Figure 3-13. Peripheral I/O Write Cycle Timing

Symbol	Parameters	Min	Max	Units	Note
t ₁	Address setup time	1	2	AGP/PCI CLK	1
t ₂	Write Command Width	5	12	AGP/PCI CLK	1
t ₃	Data to Write Command Setup Time	5		AGP/PCI CLK	
t ₄	Data to Write Command Hold Time	10		AGP/PCI CLK	

Note:1.Values are register-programmable.2.ROMA to ROMWR# hold time is fixed in one AGP/PCI bus clock cycle

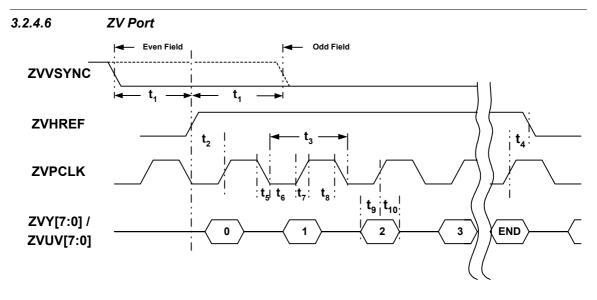


Figure 3-14. ZV Port Timing

Table 3-17. ZV Port	Timing Parameters
---------------------	-------------------

Symbol	Parameter	Minimum	Maximum	Units
t ₁	VSYNC setup time / hold time to HREF	1.5		ns
t ₂	HREF setup time	1.5	2.0	ns
t ₃	ZVPCLK cycle time	33.0		ns
t ₄	HREF hold time	1.5	2.0	ns
t ₅	ZVPCLK fall time			ns
t ₆	ZVPCLK low time			ns
t ₇	ZVPCLK rise time			ns
t ₈	ZVPCLK high time			ns
t ₉	Y[7::0] / UV[7::0]/HREF setup time	2.0	3.0	ns
t ₁₀	Y[7::0] / UV[7::0]/HREF hold time	2.0	3.0	ns

3.2.4.7 Reference Clock

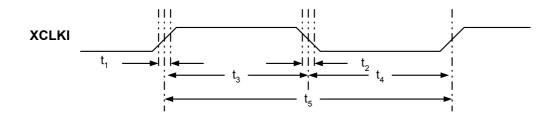
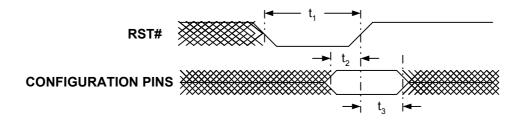


Figure 3-15. PLL Reference Clock


Table 3-18. PLL Reference Clo

Symbol	Parameter	Minimum	Maximum	Units
t ₁	Rise Time	0.1	0.5	ns
t ₂	Fall Time	0.1	0.5	ns
t ₃	High period	45		% of t ₅
t ₄	Low period	45		% of t ₅
t ₅	Period	25	500	ns

Note: The sum of the pull-in time and the locking time of the PLL is 0.5 ms max.

3.2.4.8 Reset

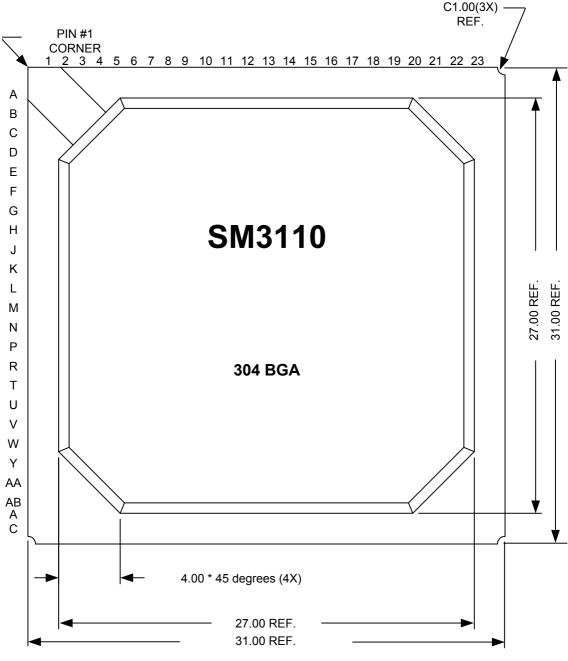


Table	3-19.	Reset	Timing
-------	-------	-------	--------

Symbol	Parameter	Minimum	Maximum	Units
t ₁	RST# active	60		MCLK
t ₂	Configuration data setup time	10		ns
t ₃	Configuration data hold time	10		ns

3.3 Mechanical Specifications

All dimensions in millimeters (mm) unless otherwise noted.

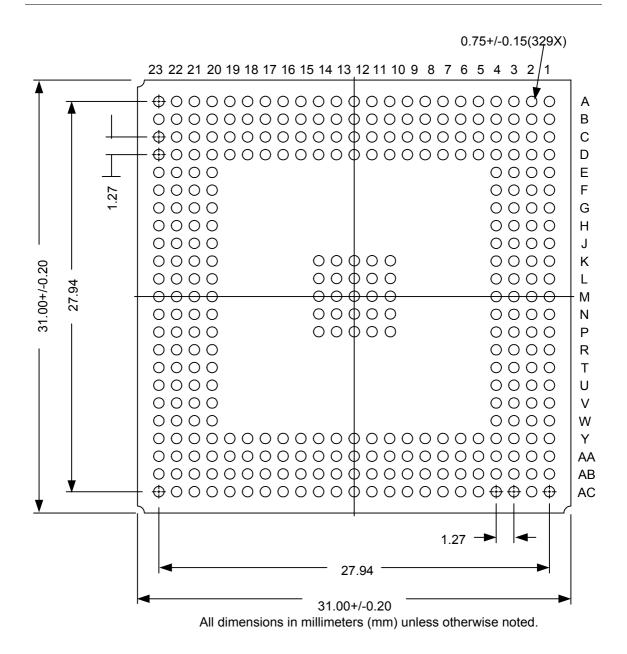


Figure 3-18. SM3110 Bottom View

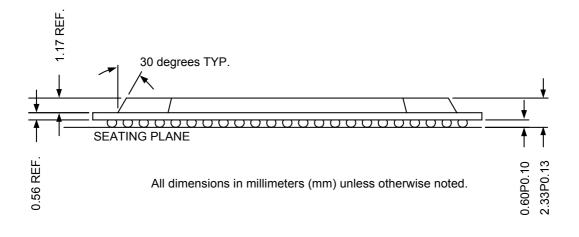
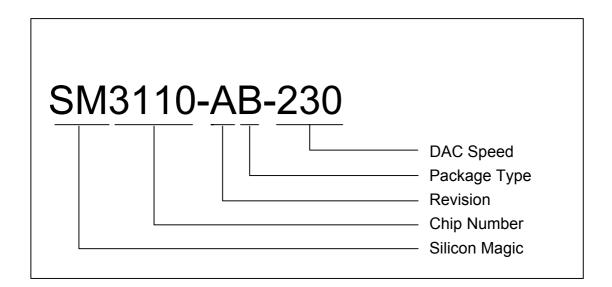
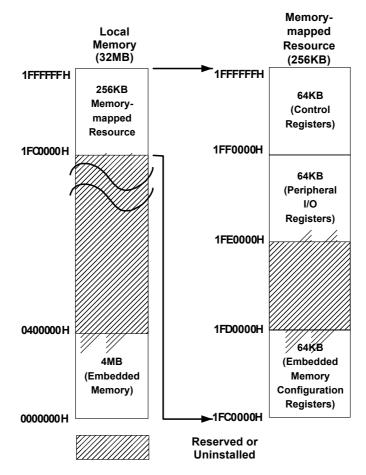



Figure 3-19. SM3110 Side View

3.4 Ordering Information


4 Register Summary

4.1 Control Address Space Overview

All of the functions and data areas of the SM3110 are accessible through memory-mapped registers. This chapter describes each of the registers defined for setting up, writing and reading the SM3110 graphics chip.

All registers associated with the SM3110 are accessible in one or more address spaces. As shown in Figure 4-1, the 32MB Local Memory contains a 256KB region for memory-mapped resources. This is further divided into four(4) 64KB regions, the upper-most of which is the Control Address Space. The registers discussed in this section are all mapped within the Control Address Space. (For more information on address mapping, see Section 6, Programmer's Reference.)

Because the SM3110 is a PCI- and VGA-compatible device, certain of its registers and physical addresses are defined by those standards' specifications. The required registers and addresses are available at their standard locations; in addition, they are memory-mapped within the Control Address Space. The next section describes the memory-mapped registers, while the last sub-section describes the standard VGA registers.

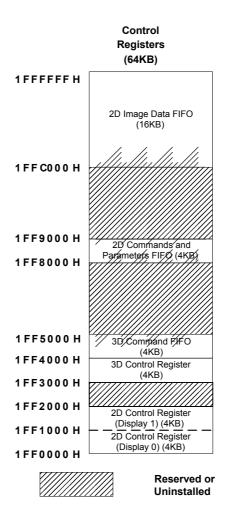


Figure 4-2. Control Address Space

The Control Address Space is divided into several areas containing registers, as shown in Figure 4-2. These areas are:

- 1) 2D Control Registers, Display 0: a 4KB region for Display 0. Base address is 1FF0000H.
- 2) 2D Control Registers, Display 1: a 4KB region for Display 1. Base address is 1FF1000H.
- 3) 3D Control Registers: a 4KB region. Base address is 1FF3000H.
- 4) 3D Command and Parameter FIFO: a 4KB region. Base address is 1FF4000H.
- 5) 2D Command and Parameter FIFO: a 4KB region. Base address is 1FF8000H.
- 6) 2D Image Data FIFO: a 16KB region. Base address is 1FFC000H

Register addresses are shown as a 12-bit offset designated (+xxxH) within the 4KB enhanced control register address space. The actual physical address is formed by adding the offset to 0FF0000H (big-endian) or 1FF0000H (little-endian).

4.2 Register Listing for Control Address Space

This section describes all of the SM3110 registers, grouped according to their major classifications within the Control Address Space. Table 4-1 shows each of these six register regions and its base address for both little- and big-endian access. The six regions are each discussed in the order they occur within the Control Address Space, from lowest to highest address. Within each region, the registers are also presented in order, from lowest to highest address offset.

		Big-Endian	Big-Endian	
	Little-Endian	(DWS)	(WS)	Size
2D Image Data FIFO	1FFC000H	5FFC000H	7FFC000H	16KB
Reserved	1FF9000H	5FF9000H	7FF9000H	12KB
2D Cmd/Param FIFO	1FF8000H	5FF8000H	7FF8000H	4KB
3D Cmd/Param FIFO	1FF4000H	5FF4000H	7FF4000H	4KB
3D Control	1FF3000H	5FF3000H	7FF3000H	4KB
Reserved	1FF2000H	5FF2000H	7FF2000H	4KB
2D Control (Display 1)	1FF1000H	5FF1000H	7FF1000H	4KB
2D Control (Display 0)	1FF0000H	5FF0000H	7FF0000H	4KB

Table 4-1. Control Address Space

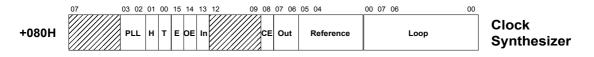
4.2.1 2D Control (Display 0, Display 1) (1FF0000H)

The 2D control registers occupy a 4KB region within the control address space, as shown in Table 4-1. and are organized as 16 sets of 256B each. This is shown in Table 4-2. All are accessed with byte resolution.

Register addresses below are shown as a 12-bit offset designated "+xxxH" within the 4KB 2D control register address space. Where a register is common to both Display 0 and Display 1, the register will be shown with two addresses: "+0xxxH" and "+1xxxH". When it is unique to Display 0, it is shown as "+xxxH"; unique to Display 1, as "+1xxxH".

(Note that the VGA control registers are memory-mapped at offset +3xxH and the PCI configuration registers are memory-mapped at offset +FxxH.)

Register Type	Offset	Size	Access	Comments
Status/Control	000H	256B	any	Status/control, interrupts,
				power management, strapping, clocks
Reserved	100H	256B	none	
Bus Master	200H	256B	any	Address and size registers
VGA	300H	256B	byte	
Peripheral I/O	400H	256B	byte	ROM, VAFC/Phillips video decoder
LCD	500H	256B	any	LCD Control
Reserved	600H	256B	none	
Reserved	700H	256B	none	
2D Rendering Engine	800H	256B	any	2D setup
Memory Controller	900H	256B	any	Memory Timing
Surface Descriptors	A00H	256B	any	Address, stride, pixel size
Channel Descriptors	B00H	256B	any	Surface base index, offsets, pixel format
Buffers Descriptors	C00H	256B	any	Address, count
Display Control	D00H	256B	any	Surface scaling, formats, filtering,
				mix/blend control
Display Timing	E00H	256B	any	Display timing, syncs, viewports
PCI Configuration	F00H	256B	any	


Table 4-2. 2D Control Register Allocation

4.2.1.1 Status/Control (+000H)

4.2.1.1.1 Memory Clock Synthesizer

The memory clock synthesizer is controlled by directly accessing four byte registers. Two bytes specify the three (reference, loop/feedback and output) dividers and one controls the output and the PLL/VCO powerdown. One byte controls PLL characteristics and test features and should not be modified during normal operation.

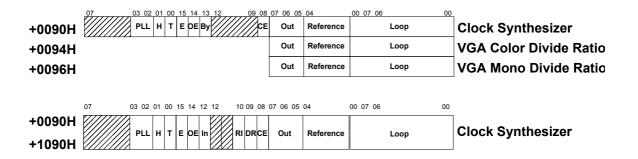
Figure 4-3. Memory Clock Synthesizer Registers

The synthesizer divider and control values must be changed only when the PLL circuitry is disabled. The sequence is to disable the PLL, modify the divider values, changing the register with the enable bit last. The registers controlling the PLL characteristics are not intended to be changed by BIOS (only by POST and/or diagnostic programs).

4.2.1.1.2 Frequency Control

Offset	Field	Access	Function
+0080H	15:00	R/W	MCLK Loop Control
	Bits	Field	
	15:14	Output	Divider
•		Value	Semantics
		0	No division
		1	Divide by 2
		2	Divide by 2
		3	Divide by 4
	Bits	Field	
	13:09	Referen	ce Divider
		Value	Semantics
		0	Reserved
		1-31	Divide ratio is this number, plus two.
_	Bits	Field	
	08:00	Loop D	ivider MSB
		Value	Semantics
		0	Reserved.
		0-511	Divide ratio.

ſ


4.2.1.1.3 VCO Control

Offset	Field	Access Function
+082H	07:00	R/W MCLK VCO Control
	Bits	Field
	07	PLL Bypass.
		Value Semantics
		0 Disabled.
		1 Enabled.
1	Bits	Field
	06	PLL power down mode
		Value Semantics
		0 Disabled.
		1 Enabled.
	Bits	Field
	05	External Clock Source Select
		Value Semantics
		0 External Clock.
		1 Internal PLL Clock. Set by level of strapping input from ROMA1. <i>Default</i> .
		Input pulled up to V _{DD} .
	Bits	Field
	04	Load PLL Counter to Working Register
		Value Semantics
		0 Normal Operation. <i>Default</i> .
		1 Load Register. Automatically returns to 0 after loading working register.
	Bits	Field
	03:02	Reserved
	01	PLL output enable
		Value Semantics
		0 Enabled
		1 Disabled
	Bits	Field
	00	Clock Enable
		Value Semantics
		0 Disabled. Output forced to '0'.
		1 Enabled. Output cycles.

4.2.1.1.4 Dot/Panel Clock Synthesizer

The synthesizer divider and control values must be changed only when the PLL circuitry is disabled. The sequence is to disable the PLL, modify the divider values, changing the register with the enable bit last.

Figure 4-4. Dot Clock Synthesizer Registers

The registers controlling the PLL characteristics are not intended to be changed by BIOS (only by POST and/or diagnostic programs).

4.2.1.1.5 Programmable Clock Ratios

Offset	Field	Access	Function
+0090H	15:00	R/W	DCLK Loop Control
+1090H	15:00	R/W	DCLK Loop Control
	Bits	Field	
	15:14	Output	Divider
		Value	Semantics
		0	No division
		1	Divide by 2
		2	Divide by 2
		3	Divide by 4
	Bits	Field	
	13:09	Referen	ce Divider
		Value	Semantics
		0	Reserved
		1-31	Divide ratio is this number, plus two.
	Bits	Field	
[08:00	Loop D	ivider MSB
•		Value	Semantics
		0	Reserved.
		0-511	Divide ratio.

4.2.1.1.6		/CO Coi	
Offset +0092H	Field	Access	Function
+0092H +1092H	07:00 07:00	R/W R/W	DCLK VCO Control (CRT) DCLK VCO Control (LCD)
+109211	Bits	Field	
	07	PLL By	nass
	07	Value	Semantics
		0	Disabled.
		1	Enabled. Minimum power consumption
	Bits	Field	Endoled. Withinitum power consumption
	06	Power I	Jown
	00	Value	Semantics
		0	Disabled.
		1	Enabled.
	Bits	Field	Endolog.
	05	Externa	l Clock Source Select.
	05	Value	Semantics
		0	External Clock.
		1	Internal PLL set by level of strapping input from ROMA. <i>Default</i> , input
		1	pulled up to V_{DD} .
	Bits	Field	punce up to v _{DD} .
	04		LL Counter to Working Register
	04	Value	Semantics
		0	Normal Operation. <i>Default</i> .
		1	Load Register. Automatically returns to 0 after loading working register.
	Bits	Field	Loud Register. Automatically retains to 6 area louding working register.
	03		tput Enable.
	05	Value	Semantics
		0	Enabled.
	Bits	Field	Entroited.
	02	Referen	ce Internal Oscillator Enable (Power Down)
	02	Value	Semantics
		0	Enabled. Default.
		1	Disabled. shuts down oscillator to reduce power dissipation in sleep mode.
	Bits	Field	Disasted. Shub de un esentator to reduce pourer dissipation in steep mode.
	01	Divide	Ratio Select
		Value	Semantics
		0	VGA DCLK Frequencies, VGA Mode. Default.
		Ť	Use divide ratio specified in either 94 95H or 96 97H selected by 3CCH[3:2].
		1	Programmable DCLK Frequencies, Enhanced Mode.
		-	Use divide ratio specified in F0 F1H.
	Bits	Field	
	00	Clock E	nable
		Value	Semantics
		0	Disabled. Output forced to '0'.
		1	Enabled. Output toggles.
		1	

Register Summary

4.2.1.1.7 VGA DCLK Presets

The following registers contain the divide ratios for the DCLK clock synthesizer for VGA graphics and text modes. These values are loaded into the DCLK clock synthesizer divide ratio registers as selected by the contents of VGA register 3CCH[3:2]

Mode	3CCH bits[3:2]	Registers offset 0xxH	<i>Wid</i> pixels	<i>Hgt</i> lines	Vert Hz	<i>Fref</i> MHz	Dref	<i>Fref2</i> MHz	Dfdbk	Fvco MHz	Dout	<i>Fout</i> MHz	Dmux	Fpixel MHz	Fdot MHz	Error
VGA Graphics	5 00B	94 95H	640	480	60	14.318	7	2.045	37	75.68	3	25.23	1	25.23	25.175	0.21
VGA Text	01B	96 97H	720	400	70	14.318	8	1.790	63	112.76	4	28.19	1	28.19	28.322	-0.47
Enhanced	11B	92 93H	640	480	75	14.318	5	2.864	33	94.50	3	31.50	1	31.50	31.500	0.00

Offset	Field	Access	Function				
+094H	07:00	R/W	DCLK Loop Control (color)				
+096H	07:00	R/W	DCLK Loop Control (mono)				
	Bits	Field					
	07:00	Loop Divi	der LSB				
Offset	Field	Access	Function				
+095H	07:00	R/W	DCLK Input/Output Control (color)				
+097H	07:00	R/W	DCLK Input/Output Control (mono)				
	Bits	Field					
	07:06	Output Div	vider				
		Value	Value Semantics				
		0	No division				
		1	Divide by 2				
		2	Divide by 2				
		3	Divide by 4				
	Bits	Field	·				
	05:01	Reference Divider					
		Value	Semantics				
		0	Reserved				
		1-31	Divide ratio				
	Bits	Field	·				
	00	Loop divid	ler, MSB				
		•					

4.2.1.1.8 System Clock DLL Control

Offset	Field	Access	Function
+0A2H	07:00	R/W	SCLK DLL Control
	Bits	Field	
	07:02	Reserved.	
	01	DLL	
		Value	Semantics
		0	Disabled.
		1	Enabled. Default.
	bits	field	
	00	Reserved.	

4.2.1.1.9 Power Management Control

Offset	Field	Access	Function
+0D0H	31:00	R/W	Power Management Control
	Bits	Field	
	31:21	Reserved.	
	20	CLKRUN	mode
		Value	Semantics
		0	SCLK nonstop. Default.
		1	Monitor internal SCLK activities.
	Bits	Field	
	19	CLKRUN	enable
		Value	Semantics
		0	Disable. Default.
		1	Enable.
	Bits	Field	
	18:00	Reserved.	

Power Management Control (continued)

Offset	Field	Access	Function
+0D4H	31:00	R/W	Gated clock control for MCLK domain
	Bits	Field	
	31:07	Reserved.	
	06	3D	
	05	2D	
	04	Reserved	
	03	Display 2	
	02	Scaler 1	
	01	Scaler 0	
	00	MIU Add	ress Translator FIFO
		Value	Semantics
		0	Enable. Default.
		1	Disable. Clock is forced to be zero.

Offset	Field	Access	Function
+0D8H	31:00	R/W	Gated clock control for DCLK domain
	Bits	Field	
	31:04	Reserved.	
	03	Scaler 0	
	02	Scaler 1	
	01	disp1	
	00	disp 0	
		Value	Semantics
		0	Enable. Default.
		1	Disable. Clock is forced to be zero.

Offset	Field	Access	Function
+0E0H	31:00	R/W	Software Reset
	Bits	Field	
	31:04	Reserved	
	03	Reset DC	LK Domain logic
	02	Reset MC	LK Domain logic
	01	Reset SC	LK PCI configuration registers
	00	Reset SC	LK Domain logic but preserve PCI configuration registers
		Value	Semantics
		0	Disable. Default
		1	Reset.
			The output of this register bit will be ORed with hardware reset signal.
			Software need to write '1' to enable the reset logic and then write '0' to dis-
			able the reset logic.

4.2.1.1.10 Status/Control Registers 06 05 07 04 03 02 01 Disp 0 Disp Capt Int VGA Int +0F0H Host DMA Status

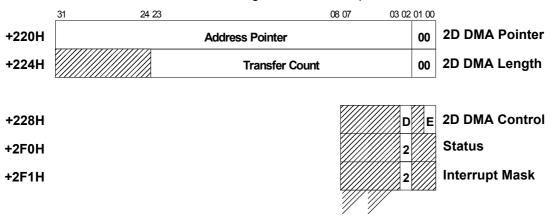
Figure 4-5. Status/Control Registers

The status bits reflected the combined (ORed) interrupt flags from each respective functional unit. The Mask suppresses reporting of interrupts but does not clear the individual interrupt flags. Note that the PCI clock (SCLK) does not have to be running in order to report interrupts. This allows asynchronous external interrupts to be reported to a "sleeping" system to wake it up.

Status

Offset	Field	Access	Function
+0F0H	07:00	R/O	Status
	Bits	Field	
	07	Display	0 VSYNC
	06	Display	1 VSYNC
	05	Video C	apture Interrupt
	04	VGA in	terrupt
	03	Reserve	d
	02	Host DI	ИА
	01:00	Reserve	d
		Value	Semantics
		0	Event has not occurred
		1	Event has occurred

Interrupt Mask


Offset	Field	Access Function
+0F1H	07:00	R/W Global Interrupt Mask. <i>Default</i> is 00H.
	Bits	Field
	07	Display 0 VSYNC (see +0DF0H for details)
	06	Display 1 VSYNC (see +1DF0H for details)
	05	Video Capture Interrupt (see +xDF0H for details)
	04	VGA interrupt (see VGA Register section)
	03	Reserved
	02	Host DMA
	01:00	Reserved
		Value Semantics
		0 Interrupt Disabled. <i>Default</i> .
		1 Interrupt Enabled

4.2.1.2 Reserved (+100H)

4.2.1.3 Host Bus Master (+200H)

The host bus master transfers data from buffers in system memory to predefined internal embedded memory addresses, the interface to an external audio DAC. The buffers are managed by hardware and the host driver and are configured as circular queues.

4.2.1.3.1 Descriptor Address

Offset	Field	Access	Function
+220H	31:00	R/W	2D DMA Address - system to/from local memory
-	Bits	Field	
	31:00	Address	Pointer to System Memory. Must be a doubleword address, bits [01:00] must
		be zero.	

4.2.1.3.2 Descriptor Count

Offset	Field	Access	Function
+224H	31:00	R/W	2D DMA Count - system to/from local memory
	Bits	Field	
	31:24	Reserved.	
	23:00	Transfer C	Count, number of bytes -4. Must be in multiples of doublewords, bits [01:00]
		must be z	ero.

4.2.1.3.3	Ľ	Descriptor	r Control
Offset	Field	Access	Function
+228H	07:00	R/W	2D DMA Control - system to/from local memory
	Bits	Field	
	07:03	Reserved.	
	02	Transfer I	Direction.
		Value	Semantics
		0	Local to System.
		1	System to Local.
	bits	field	
	01	Reserved.	
	00	Transfer I	Enable. Note that this bit is not cleared automatically by the DMA upon com-
		pletion of	the last transfer. The driver disables the DMA while channel is being (re)ini-
		tialized.	
		Value	Semantics
		0	Disable. Default.
		1	Enable.

4.2.1.3.4 Interrupts Status

Field	Access	Function
07:00	R/W	2D DMA Status/Interrupt Flag
Bits	Field	
07:03	Reserved.	
02	Host DMA	A transfer complete - system to/from local memory.
01:00	Reserved.	
	Value	Semantics
	0	Read. Event has not occurred.
	1	Read. Event occurred.
	0	Write. No change.
	1	Write. Reset Flag.
	07:00 <i>Bits</i> 07:03 02	07:00 R/W Bits Field 07:03 Reserved. 02 Host DMA 01:00 Reserved. Value 0 1 1

4.2.1.3.5 Interrupts Mask

Offset	Field	Access	Function
+2F1H	07:00	R/W	2D DMA Interrupt Mask
	Bits	Field	
	07:03	Reserved.	
	02	Host DM.	A - system to/from local memory
	01:00	Reserved.	
		Value	Semantics
		0	Interrupt Disabled. (masked)
		1	Interrupt Enabled.

4.2.1.4 VGA Registers (+300H)

This area is a memory-mapped equivalent of the standard VGA control register address space. See Section 4.3, Standard VGA Registers, for a description of the VGA registers.

Accessing VGA registers through memory-mapped addressing can only be done with byteaddressing.

4.2.1.5 Peripheral Ports (+400H)

There are several peripheral I/O ports that are controlled through memory-mapped registers.

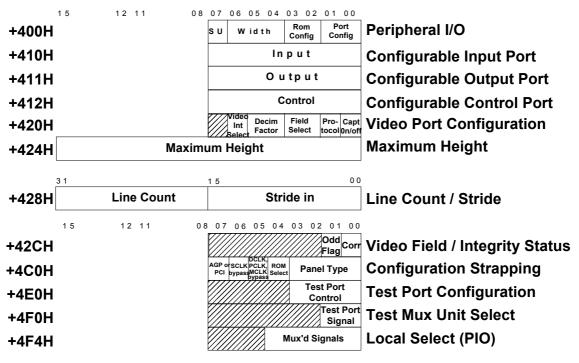


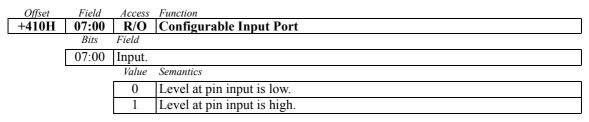
Figure 4-7. Peripheral Ports

4.2.1.5.1 Port Timing

This specifies the transfer timing for the BIOS ROM and peripheral I/O device accesses. Once the BIOS has been shadowed (copied) in system memory, the timing may be adjusted to satisfy the slowest device that is connected to the peripheral I/O bus. Timing is specified in units of the PCI or AGP bus clocks. The timing defaults to the slowest settings (360ns strobe width with a 33MHz PCI clock). The address hold time is fixed at 1 clock.

Offset	Field	Access	Function
+400H	07:00	R/W	Peripheral I/O Port Configuration
	Bits	Field	
	07	Address S	Setup.
		Value	Semantics
		0	2 clocks. Default.
		1	1 clock.
	Bits	Field	·
	06:04	Strobe W	idth.
		Value	Semantics
		0	12 clocks. Default.
		1-7	value+4 clocks.
	Bits	Field	
	03:02	ROM por	t configuration
		Value	Semantics
		11	Display 1
		10	Display 0
		01	Peripheral I/O address for fresh ROM update.
		00	ROM
	Bits	Field	·
	01:00	LCD Port	Configuration.
		Value	Semantics
		11	Display 1
		10	Display 0
		01	Reserved.
		00	LCD

4.2.1.5.2 Configurable Data Port


A configurable data port is provided to access up to 8 bits of data that can be used for:

- A software implementation of I²C or DDC protocols over two (mutually exclusive) pairs of pins.
- Any other programmable input or output.

The interface consists of three bytes allowing complete and independent control of 8 pins:

- The first byte is input only, returning the value at the input pins.
- The second byte is output only, the value written is driven on the output pins if enabled.
- The third byte independently controls the output enable of each bit of the data output port.

Configurable I/O Input

Configurable I/O Output

Offset	Field	Access	Function
+411H	07:00	R/W	Configurable Output Port
	Bits	Field	
	07:00	Output. V	Vrite
		Value	Semantics
		0	Level to pin output is low.
		1	Level to pin output is high.
	bits	field	
	07:00	Output. F	Read
		Value	Semantics
		0	Level last written to pin output is low.
		1	Level last written to pin output is high.

Configurable I/O Control

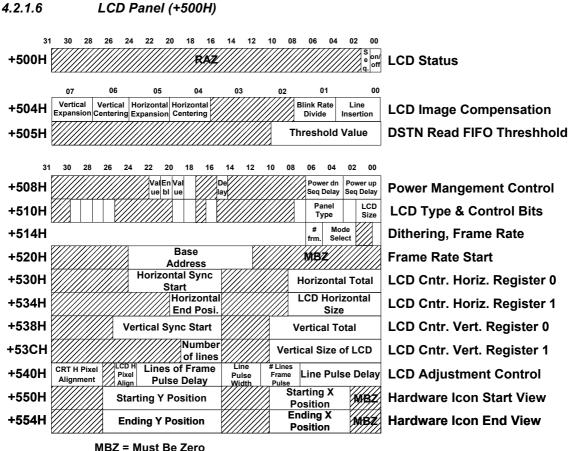
Offset	Field	Access	Function
+412H	07:00	R/W	Configurable Control Port
	Bits	Field	
	07:00	Enable.	Default is FFH, all bits disabled.
		Value	Semantics
		0	Output is enabled and pulled low.
		1	Output is disabled, it will be pulled high by an external pullup resistor.

4.2.1.5.3 Video Input Port

Offset	Field	Access	Function
+424H	15:00	R/W	Maximum Height
	Bits	Field	
	15:00	Maximum	Height (Maximum number of lines to capture)
		Value	Semantics
		0-FFFFH	Maximum number of lines to capture (0-64K). Note: this number must be
			even. If an odd number is entered, the last bit will be treated as a zero.

Offset	Field	Access	Function
+428H	31:00	R/O	Video Input Dimensions
	Bits	Field	
	31:16	Line count	of external video input
		Value	Semantics
		0-FFFFH	Maximum number of lines captured (0-64K)
	Bits	Field	
	15:00	Stride of ex	xternal video input.
		Value	Semantics
		0-FFFFH	Number of pixels/line captured

Field	Access	Function
7:00	R/O	Video Field and Integrity Status
Bits	Field	
07:02	Reserved	
01	Odd Field	Flag
	Value	Semantics
	1	Odd field
	0	Even field
Bits	Field	·
00	External V	ideo Data Corruption (1=corruption, 0=no corruption)
	Value	Semantics
	1	Video corruption
	0	No corruption
	7:00 Bits 07:02 01 Bits	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


4.2.1.5.4 Configuration Strapping

This read-only register contains the values sampled from the configuration pins at the trailing edge of RESET. These determine certain operational modes of the chip that must be specified initially before any BIOS or other initialization routines can access any other configuration registers in the chip. In particular, these modes relate to connections and configuration at the board level (such as bus type and I/O) that cannot be determined by initialization/configuration BIOS software. A weak internal pullup to V_{DD} is provided on each sampled input; for a configuration bit to be sampled as a '0', an external pulldown to V_{SS} is required.

Offset	Field	Access	Function
+4C0H	7:00	R/O	Configuration Strapping
	Bits	Field	
	07	AGP or PO	CI Select.
•		Value	Semantics
		0	PCI. Default.
		1	AGP
	Bits	Field	•
	06	SCLK byp	Dass
•		Value	Semantics
		0	Bypassed
		1	Not bypassed. Default.
	Bits	Field	· · ·
	05	DCLK, PC	CLK and MCLK Bypass.
-		Value	Semantics
		0	Bypassed
		1	Not bypassed. Default.
	Bits	Field	· · ·
	04	ROM Sele	ect (32K or 64K).
-		Value	Semantics
		0	32K
		1	64K
	Bits	Field	·
	03:00	Panel Type	e
•		Value	Semantics
			Software defined

Register Summary

RAZ = Read As Zero

Figure 4-8. LCD Panel Registers

4.2.1.6.1 LCD Status

Offset	Field	Access	Function
+500H	31:00	R/O	LCD Status
	Bits	Field	
	31:02	Reserved.	Read as zero.
	01	LCD pow	er sequencing in progress
		Value	Semantics
		0	False
		1	True
	Bits	Field	
	00	LCD	
		Value	Semantics
		0	Off
		1	On

4.2.1.6.2 LCD Image Compensation

Field	Access	Function
07:00	R/W	LCD Image Compensation
Bits	Field	
07	Enable vo	ertical expansion for standard VGA modes
	Value	Semantics
	0	Disable. Default.
	1	Enable.
Bits	Field	
06	Reserved	
05	Enable h	orizontal expansion for standard VGA modes
	Value	Semantics
	0	Disable. Default.
	1	Enable.
Bits	Field	
04:02	Reserved	
01	Text fore	ground color blinking rate and cursor blinking rate divided by half
	Value	Semantics
	0	Disable. Default.
	1	Enable.
Bits	Field	
00	Enable li	ne insertion function in text mode for 640x480 panel
	Value	Semantics
	0	Disable. Default.
	1	Enable.
	07:00 Bits 07 Bits 06 05 Bits 04:02 01 Bits	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

4.2.1.6.3 DSTN Read FIFO Control

_	Offset	Field	Access	Function
	+505H	07:00	R/W	DSTN Read FIFO Threshold
_		Bits	Field	
		07:02	Reserved.	
		01:00	Threshold	value = 1 (default = 0)

4.2.1.6.4 LCD Power Management Control

Offset	Field	Access	Function		
+508H	31:00	R/W	Power management control		
	Bits	Field			
	31:23	Reserved.			
	22	Software o	verride fpV _{ee} value. Default is 0		
	21	Software o	verride fpV _{ee} enable. Default is 0		
	20	Software o	verride fpbklt value. Default is 0		
	19	Software o	verride fpbklt enable. Default is 0		
	18:16	Reserved.	Reserved.		
	15	Power dow	/n delay		
		Value	Value Semantics		
		0	Normal power down delay. Default.		
		1	fast power down delay		
	Bits	Field			
	14:08	Reserved.			
	07:04	Power dow	vn sequence delay. Default is: 0010		
	03:00	Power up s	sequence delay. Default is: 0010		

Offset	Field	Access	Function
+510H	31:00	R/W	LCD Type and Control Bits
	Bits	Field	
	31:30	Reserved	
	29	FPVDCL	K Polarity
		Value	Semantics
		0	Normal. Default.
		1	Inverted.
	Bits	Field	
	28		K Clock Enable
		Value	Semantics
		0	Free running. Default.
		1	Gated by display enable.
	Bits	Field	
	27	Line puls	e Enable
		Value	Semantics
		0	Free running. Default.
		1	Gated by display enable.
	Bits	Field	
	26	HDE	
		Value	Semantics
		0	ANDed with VDE. Default.
		1	Not ANDed with VDE.
	Bits	Field	
	25:20	Reserved	
	Bits	Field	
	19	Line Puls	e Phase
		Value	Semantics
		0	Normal. <i>Default</i> .
		1	Inverted.
	Bits	Field	
	18	LFS Phas	
		Value	Semantics
		0	Normal. Default.
		1	Inverted.
	Bits	Field	
	17	DSTN fra	
		Value	Semantics
		0	Normal. Default.
	-	1	Doubled
	Bits	Field	1 ·
	16	Pixel data	
		Value	Semantics
		0	Normal. Default.
		1	Inverted.

Bits	Field						
15:10	Reserved.	Reserved.					
09	Synchron	ize CRT with LCD					
	Value	Semantics					
	0	Disable. Default.					
	1	Enable.					
Bits	Field	<u> </u>					
08	LCD Display Subsystem						
	Value	Semantics					
	0	Disable. Default.					
	1	Enable.					
Bits	Field						
07:04	Panel Typ	be					
	Value	Semantics					
	0	DSTN-8. Default.					
	1	DSTN-16					
	2	DSTN-24					
	3-7	Reserved					
	8	TFT-9					
	9	TFT-12					
	10	Reserved					
	11	TFT-18					
	12	TFT-24					
	13-15	Reserved					
Bits	Field						
03		to Clock ratio					
	Value	Semantics					
	0	1 pixel/clock. Default.					
_	1	2 pixel/clock.					
Bits	Field	~					
02		e Graphics extension by dupication of last bit.					
	Value	Semantics					
	0	Disabled. Default.					
D:/	1	Enabled for all ASCII codes.					
Bits	Field						
01:00	LCD Pane	el Stretch Ratio					
		Semantics					
	0	640x480. <i>Default</i> .					
	1	800x600					
	2	1024x768 of higher.					
	3	Reserved.					

4.2.1.6.6 LCD Dithering and Frame Rate Modulation

Offset	Field	Access	Function
+514H	07:00	R/W	Dithering and Frame-Rate-Modulation
	Bits	Field	
	07:06	FRC fr	ame
		Value	Semantics
		0	8 frame FRC.
		1	16 frame FRC. Default.
		2	256 frame FRC (EEDS pat. pending)
		3	Reserved
	Bits	Field	
	05:03	TFT dit	thering mode selection
		Value	Semantics
		0	5bit to 4bit. <i>Default</i> .
		1	5bit to 3bit
		2	6bit to 4bit
		3	6bit to 3bit
		4	8bit to 6bit
		5	8bit to 4bit
		6-7	Reserved.
	Bits	Field	
	02:01	Reserve	ed.
	00	Enable	Dithering
		Value	Semantics
		0	Disable. Default.
		1	Enable.

4.2.1.6.7 DSTN Frame Rate Accelerator Starting Address

Offset	Field	Access	Function		
+520H	31:00	R/W	DSTN frame-rate-accelerator starting address		
	Bits	Field	Tield		
	31:24	Reserved.	Reserved.		
	23:12	Base Address, in units of 4KB.			
	11:00	Must be ze	ro to align to a natural 4KB boundary.		

4.2.1.6.8 LCD Controller CRTC Registers

These registers are fully programmable only in Enhanced VGA Modes. In standard VGA modes only +538H[08:00] and +53CH[10:00] are programmable; the remaining values are managed by the hardware.

Offset	Field	Access	Function	
+530H	31:00	R/W	LCD Controller Horizontal Register 0	
	Bits	Field		
	31:25	Reserved.		
	24:16	Mirror of	VGA CRTC/04; horizontal sync start register	
	15:09	Reserved.		
	08:00	Mirror of	VGA CRTC/00; horizontal total register: real total = value + 5, i.e. 63h+5h =	
		68h		
Offset	Field	Access	Function	
+534H	31:00	R/W	LCD Controller Horizontal Register 1	
	Bits	Field		
	31:21	Reserved.		
	20:16	Mirror of	VGA CRTC/05; horizontal sync end position register	
	15:09	Reserved.		
	08:00	number of	character clocks is programmed; LCD horizontal size: real size = value + 1	
Offset	Field	Access	Function	
+538H	31:00	R/W	LCD Controller Vertical Register 0	
	Bits	Field		
	31:27	Reserved.		
	26:16	Mirror of	VGA CRTC/10; number of lines is programmed. Vertical sync start: Width =	
		sync end	– sync start	
	15:11	Reserved.		
	10:00	Mirror of	CRTC/06; number of lines is programmed. Vertical total: Real total = value +	
		2		
Offset	Field	Access	Function	
+53CH	31:00	R/W	LCD Controller Vertical Register 1	
	Bits	Field		
	31:20	Reserved.		
	19:16	Mirror of	VGA CRTC/11; number of lines is programmed into this register. Vertical	
		sync end register.		
	15:11	Reserved.	<u> </u>	
	10:00	Number o	f lines is programmed. Vertical size of LCD. Real size = value +1.	

4.2.1.6.9 LCD Adjustment Control

Offset	Field	Access	Function
+540H	31:00	R/W	LCD Adjustment Control Register
	Bits	Field	
	31:28	CRT vertic	al pixel alignment.
		Value	Semantics
		0	No delay.
		1-15	1-15 clock delay.
	Bits	Field	
	27	Reserved.	
	26:24	LCD control	oller vertical pixel alignment
		Value	Semantics
		0	No delay.
		1-7	1-7 pixels delay.
	Bits	Field	
	23:16	number of	lines is programmed for frame pulse delay control.
	15:12	number of	character clocks is programmed for line pulse width (= value)
	11:08	number of scan lines is programmed for frame pulse width (= value)	
	07:00	number of	character clocks is programmed for line pulse delay control.

4.2.1.6.10 VGA Hardware ICON Viewport

Offset	Field	Access Function	
+550H	31:00	R/W Hardware ICON Starting Viewport	
	Bits	Field	
	31:27	Reserved.	
	26:16	Starting Y position	
	15:11	Reserved.	
	10:03	Starting X position (8 pixel granularity)	
	02:00	Must be zero.	
Offset	Field	Access Function	
+554H	31:00	R/W Hardware ICON Ending Viewport	
	Bits	Field	
	31:27	Reserved.	
	26:16	Ending Y position	
	15:11	Reserved.	
	10:03	Ending X position (8 pixel granularity)	
	02:00	Must be zero.	

4.2.1.7 Reserved (+600H)

4.2.1.8 Reserved (+700H)

4.2.1.9 2D Rendering Engine (+800H)

There are a maximum of 16 registers controlling the 2D Rendering Engine that are normally loaded via the PCI through the command/parameter FIFO. PCI register indexes are in double-word units and must be multiplied by 4 to generate the corresponding register byte offset that is added to the Rendering Engine offset.

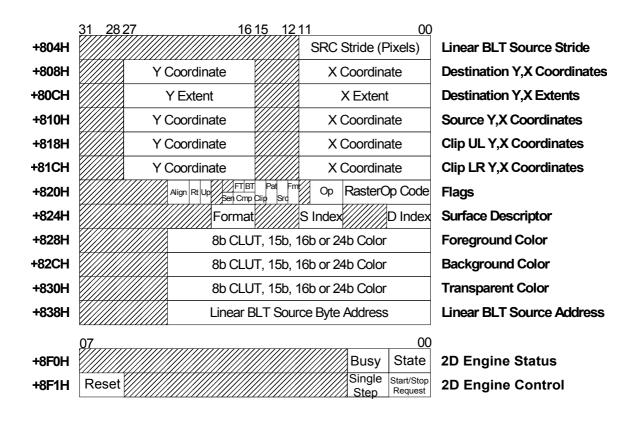


Figure 4-9. 2D Rendering Engine

4.2.1.9.1 Linear BLT Source Stride

The source (pixel) stride is specified in the least significant 12 bits of the parameter register (using rectangular format).

Offset	Field	Access	Function
+804H	31:00	R/W	Source Stride
	Bits	Field	
	31:12	Reserved.	
	11:00	Source Stride in (destination) pixels.	

4.2.1.9.2 Source/Destination

Parameter coordinates are specified using rectangular pixel addressing to reduce the path length of driver setup code. The resulting local memory address is computed in bytes. 0,0 is the upper left corner of the screen, X_{max} , Y_{max} is the lower right corner of the screen. X and Y coordinates are assumed to be 12-bit two's complement. X and Y extents are 12-bit unsigned values (allowing the extent to range from 1 to 2048; an extent of 0 causes nothing to happen). Both are stored right-justified in a 16 bits field.

Note: Extents specify the actual number of pixels (not decremented by 1).

Offset	Field	Access Function		
+808H	31:00	R/W Destination Y, X Coordinates		
	Bits	Field		
	31:28	Reserved.		
	27:16	Y Coordinate, 12b 2's complement		
	15:12	Reserved.		
	11:00	X Coordinate, 12b 2's complement		
Offset	Field	Access Function		
+80CH	31:00	R/W Destination Y, X Extents		
	Bits	Field		
	31:27	Reserved.		
	26:16	Y Extent, 12b unsigned.		
	15:11	Reserved.		
	10:00	X Extent, 12b unsigned.		
Offset	Field	Access Function		
+810H	31:00	R/W Source Y, X coordinates		
	Bits	Field		
	31:28	Reserved.		
	27:16	Y Coordinate, 12b 2's complement		
	15:12	Reserved.		
	11:00	X Coordinate, 12b 2's complement		

4.2.1.9.3 Clip Rectangle

Offset	Field	Access Function				
+818H	31:00	R/W Clip Rectangle, Upper left corner Y, X pixel coordinates				
	Bits	Field				
	31:28	Reserved.				
	27:16	Y Coordinate, 12b unsigned				
	15:12	Reserved.				
	11:00	X Coordinate, 12b unsigned				
Offset	Field	Access Function				
+81CH	31:00	Clip Rectangle, Lower right corner Y, X pixel coordinates				
	Bits	Field				
	31:28	Reserved.				
	27:16	Y Coordinate, 12b unsigned				
	15:12	Reserved.				
	11:00	X Coordinate, 12b unsigned				

4.2.1.9.4 Flags

The command FIFO loads the following registers as 24 bits.

Alignment, Direction (X,Y)

Offset	Field	Access Function
+820H	31:00	R/W Flags
	Bits	Field
	31:24	Reserved. Must be zero.
	Bits	Field
	23:22	Inter-Scan Alignment
		Value Semantics
		0 Byte
		1 Word (16b)
		2 DoubleWord (32b)
		3 Bit (valid only for mono source)
	Bits	Field
	21	X Direction, Right
		Value Semantics
		0 Left, left to right, increasing X value.
		1 Right, right to left, decreasing X value.
	Bits	Field
	20	Y Direction, Up
		Value Semantics
		0 Down, top to bottom, increasing Y value.
		1 Up, bottom to top, decreasing Y value.
	Bits	Field
	19	Reserved. Must be zero.

Mono Source BLT Transparency

Controls write of the ROP/BLT operation with a mono source to the destination as summarized in the table below:

Bits	Field					
18	Pattern Transparency.					
	Value Semantics					
	0 Opaque.					
	1 Transparent, the pattern is compared against the value in the transparent co	lor				
	register.					
Bits	Field					
17	BLT Foreground Transparency.					
	Value Semantics					
	0 Opaque.					
	1 Transparent.					
Bits	Field					
16	BLT Background Transparency.					
	Value Semantics					
	0 Opaque.					
	1 Transparent.					

Note: Definitions of these bits differs significantly from the same bits in Color Source BLT Transparency Control.

_[[17]	[16]	Data=1	Data=0	Function	Comments
	0	0	Foreground	Background	normal	
	0	1	Foreground	don't change	object over pattern	"weatherman in front of a map"
	1	0	don't change	Background	pattern thru background	
	1	1	Background	Foreground	reverse	

Color Source BLT Transparency Control

For the transparent BLT operation, this field controls the write of the ROP/BLT operation to the destination by comparing the comparand (source, destination or pattern) with the transparent color register.

Bits	Field						
18	Transparent BLT Sense.						
	Value	Semantics					
	0	Normal. Writes are disabled where the comparand and transparent color regis-					
		ter matches.					
	1	Inverted. Writes are enabled where the comparand and transparent color regis-					
		ter matches.					
Bits	Field						
17:16	BLT Fo	BLT Foreground Transparency Comparand Source.					
	Value Semantics						
	0	Opaque. Do not compare.					
	1	1 Source.					
	2	2 Destination.					
	3	Pattern.					

Note: Definitions of these bits differs significantly from the same bits in Monochrome BLT Transparency Control.

Source Control

Bits	Field					
15	Clipping					
	Value Semantics					
	0 Disable Clipping.					
	1 Enable Clipping.					
Bits	Field					
14	Pattern.					
	Value Semantics					
	0 Use pattern buffer.					
	1 Use background register instead of pattern buffer.					
Bits	Field					
13	Source					
	Value Semantics					
	0 Local Memory (screen to screen).					
	1 Image Data (copied from system memory by the CPU).					
Bits	Field					
12	Source Format					
	Value Semantics					
	0 Mono.					
	1 Color.					

Operation

A four bit field specifies up to 16 different operations. A secondary function field specifies the raster Op code that is used when one of the raster operations is specified.

Bits	Field			
11:08	Operation			
	Value	Semantics		
	0-1H	Reserved.		
	2H	BitBLT with Logical ROP. Function specified in ROP code field.		
	3Н	Reserved.		
	4-5H	Reserved.		
	6H	LinBLT with Logical ROP. Function specified in ROP code field.		
	7H	Reserved.		
	8H	Signal3D		
	9H	Wait3D		
	A-FH	Reserved.		
Bits	Field			
07:00	Raster Op	aster Op Code		
	Value	Semantics		
	00-FFH	Raster Operation.		

4.2.1.9.5 Surface Descriptors

The base address register pointers (point to an actual surface base address register) for source and destination. The pixel size (1, 2 or 3 bytes per pixel) is specified for both source and destination.

Offset	Field	Access	Function		
+824H	31:00	R/W	Surface Descriptor		
	Bits	Field			
	31:18	Reserve	<i>d</i> .		
	17:16	Source/	Destination Surface Pixel Size.		
		Value	Semantics		
		0	8bpp.		
		1	16bpp.		
		2	24bpp.		
		3	Reserved.		
	Bits	Field	·		
	15:12	Reserve	<i>d</i> .		
	11:08	Source	Source Surface Base Register Index. specifies which surface base register should be		
		used.			
	07:04	Reserve	Reserved.		
	03:00	Destinat	Destination Surface Base Register Index. specifies which surface base register should		
		be used.			
		Value	Semantics		
		0-FH	Surface base register index		

4.2.1.9.6 Color Setting

Offset	Field	Access	Function		
+828H	31:00	R/W	Foreground Color		
	Bits	Field			
	23:00	24b pixel	l, right justified, bits [31:24] are Reserved.		
	15:00	15/16b p	ixel, right justified, bits [31:16] are Reserved.		
	07:00	8b pixel,	right justified, bits [31:08] are <i>Reserved</i> .		
Offset	Field	Access	Function		
+82CH	31:00	R/W	Background Color		
	Bits	Field			
	23:00	24b pixel	l, right justified, bits [31:24] are Reserved.		
	15:00	15/16b p	ixel, right justified, bits [31:16] are Reserved.		
	07:00		8b pixel, right justified, bits [31:08] are Reserved.		
Offset	Field	Access	Function		
+830H	31:00	R/W	Transparent Color		
	Bits	Field			
	23:00	24b pixel	l, right justified, bits [31:24] are Reserved.		
	15:00	15/16b p	ixel, right justified, bits [31:16] are Reserved.		
	07:00	8b pixel,	right justified, bits [31:08] are Reserved.		

4.2.1.9.7 Linear BLT Source Address

The linear (byte) address is specified in the least significant 24 bits of the parameter register (using linear format). Maximum address space is 16 megabytes.

Offset	Field	Access	Function
+838H	31:00	R/W	Linear Source Address
	Bits	Field	
	31:24	Reserved.	
	23:00	Linear Add	ress in bytes.

4.2.1.9.8 2D Engine Status

no pending memory accesses. Default.
d or pending completion of a memory
e run bit being deasserted or after reset.
ng commands or busy processing a com-
· - •

Note: A false Idle may be read if the engine has not yet begun to execute the programmed instruction. Wait several instructions before polling this register to be sure the instruction at least has begun executing.

4.2.1.9.9 2D Engine Control

There is a single byte register that controls the run/step/stop state of the 2D rendering engine. The Run (request) control bit and running status bit are used together to control execution of the rendering engine. After deasserting the Start bit, the Running bit should be polled to determine when the engine has actually stopped. The deassertion of the Running bit will always lag deassertion of the Start bit by one or more clock cycles. The Reset bit can be asserted to cause the engine to be reset; it must then be deasserted to allow the engine to restart execution when the Start bit is subsequently asserted.

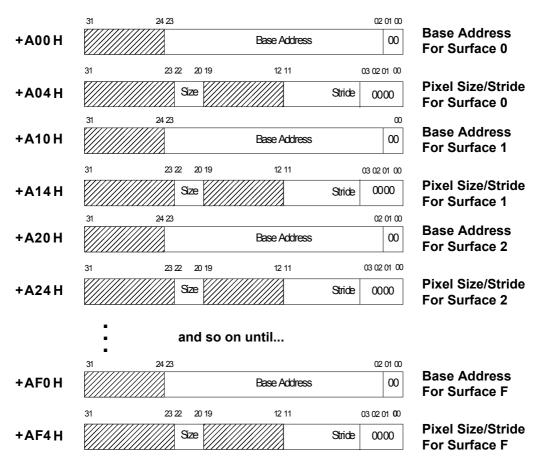
Offset	Field	Access	Function
+8F1H	07:00	R/W	2D Rendering Engine Control
	Bits	Field	
	07	Reset.	
		Value	Semantics
		0	Normal Operation.
		1	Reset, terminates current operation in progress and resets the engine. When
			deasserted it will be left in a Stopped state. Any pending memory requests will
			be completed.
	Bits	Field	
	06:02	Reserve	ed.
	01	Execute	e/Single Step. The command specified in the flags register is executed. The bit
		is reset	upon completion of one command. This is ignored if the Run is set.
		Value	Semantics
		0	Idle.
		1	Single Execution.
	Bits	Field	·
	00	Start. 7	This bit is sampled only between command execution boundaries. If it is deas-
		serted, t	then reasserted while a command is executing it will not cause any change.
		Value	Semantics
		0	Stop (Request). Stop after the end of the current command. Default.
			This can also be reset by a command issued through the rendering engine
			FIFO.
		1	Start (Request). Start execution (if any commands are pending in the FIFO).

4.2.1.10 Memory Controller (+900H)

Offset	Field	Access Function				
+910H	15:00	R/W Internal Refresh Counter Divide Ratio				
	Bits	Field				
	15:10	Reserved.				
	09:00	Internal Refresh Rate Divide Ratio.				
		Value Semantics				
		0 Disabled. Default.				
		1-1023 n + 1, range of 21024.				
Offset	Field	Access Function				
+920H	15:00	R/W External Refresh Counter Divide Ratio (<i>Reserved</i>)				
	Bits	Field				
	15:00	Reserved.				
Offset	Field	Access Function				
+930H	15:00	R/W Bus Interface Unit Output Clock Delay				
	Bits	Field				
	15:06	Reserved.				
	05:04	Bus Interface Unit Output Clock Delay Value.				
		Value Semantics				
		0 No delay. Default.				
		3 Largest delay.				
	Bits	Field				
	03:00	Reserved.				

Bits [09:00] in +910H and +920H specify the ratio that the input reference clock is divided by, nominally 14.318MHz down to 56KHz, respectively, to generate the refresh requests.

Reference	14.31818	MHz
DRAM Macro	SMC/4Mb	
Rows	256	
Accessed Blocks/Bank	1	
Total Blocks/Bank	16	
Number of Banks/Macro	1	
Number of Macros	8	
Total Rows/Interval	4096	refresh cycles
Relative Peak Refresh Power	8	x 1 block
Minimum Refresh Interval	16	mS
Typical Refresh Interval	32	mS
Maximum Refresh Interval	64	mS
Minimum Request Rate	64	KHz
Maximum Request Rate	256	KHz
Maximum Divide Ratio	224	
Minimum Divide Ratio	56	
Lowest Refresh Rate	56	KHz



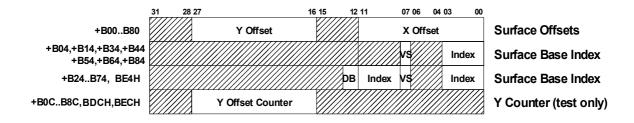
4.2.1.11 Surface Descriptors (+A00H)

The following provide a common definition of the base addresses and strides (where appropriate) of surfaces. These surfaces are required for:

- Graphics display surfaces
- Video display surfaces
- Cursor surfaces
- Icon surface
- Graphics rendering surfaces
- Video capture surfaces
- Spares

Sixteen surface descriptors (0-FH) are provided to allow double buffering for control, cursor or other surfaces.

4.2.1.11.1 Base Address Descriptor


Offset	Field	Access	Function
+A00H	31:00	R/W	Surface 0 F Descriptors. Base Address
+AF0H			
·	Bits	Field	
	31:24	Reserved.	
	23:00	Surface B	ase Address. Linear Byte address. Surfaces must be aligned to a natural 32b/
		4B bound	ary. bits[01:00] must be zero.

4.2.1.11.2 Pixel size/Stride Descriptor

Offset	Field	Access	Function
+A04H	31:00	R/W	Surface 0 F Descriptors. Stride/Pixel Size
+AF4H			
	Bits	Field	
	31:23	Reserved.	
	22:20	Surface P	ixel Size
		value	semantics
		0	Reserved.
		1	1bpp. Surface stride granularity of 2B.
			The mono cursor surface stride granularity must be 64B.
		2	2bpp. Surface stride granularity of 4B.
		3	4bpp. Surface stride granularity of 8B.
		4	8bpp. Surface stride granularity of 16B.
		5	16bpp. Surface stride granularity of 32B.
		6	24bpp. Surface stride granularity of 48B.
		7	32bpp. Surface stride granularity of 64B.
	Bits	Field	
	19:12	Reserved.	
	11:00	Stride in p	bixels. Range from 0 to 4080 in multiples of 16. Bits[03:00] must be zero.

4.2.1.12 Channel Descriptors (+B00H)

Figure 4-11. Channel Offset/Index Descriptors

4.2.1.12.1 Surface Offsets

Offset	Field	Access	Function			
+B00H	31:00	R/W	R/W Surface Offset for Cursor 0 Channel			
+B10H	31:00	R/W	Surface Offset for Icon Channel			
+B20H	31:00	R/W	Surface Offset for Scaler 0 Channel			
+B30H	31:00	R/W	Surface Offset for Display 0 Channel			
+B60H	31:00	R/W	Surface Offset forCursor 1 Channel			
+B70H	31:00	R/W	Surface Offset for Scaler 1 Channel			
+B80H	31:00	R/W	Surface Offset for Display 1 Channel			
	Bits	Field				
	31:28	31:28 Reserved.				
	27:16	:16 Y Offset in pixel/line units.				
		Reserved.	Reserved.			
	11:00	X Offset i	n pixel units.			

4.2.1.12.2 Channel Descriptor Index

This set of registers specifies the index into the surface descriptor array for each channel.

Offset	Field	Access	Function
+B04H	31:00	R/W	Cursor 0 Channel/Surface Descriptor Index
+B14H	31:00	R/W	Icon Channel/Surface Descriptor Index
+B34H	31:00	R/W	Display 0 Channel/Surface Descriptor Index
+B64H	31:00	R/W	Cursor 1 Channel/Surface Descriptor Index
+B84H	31:00	R/W	Display 1 Channel/Surface Descriptor Index
	Bits	Field	
	31:08	Reserved.	
	07		lection (Only applied to back end display channel descriptors)
		Value	Semantics
		0	Display 0 Vsync. Default.
		1	Display 1 Vsync
	Bits	Field	
	06:04	Reserved.	
	03:00	Index.	<u> </u>
		Value	Semantics
Offered	E: JJ	0-FH	Index to surface base register array.
<i>Offset</i> + B24H	Field 31:00	Access R/W	Function Scaler 0 Channel/Surface Descriptor Index
+B74H	31:00	R/W	Scaler 1 Channel/Surface Descriptor Index
+BE4H	31:00	R/W	Video Capture Channel Surface Descriptor Index
	Bits	Fiel	· · ·
	31:14	Reserved.	
	13:12	Double by	affering modes for video capture
		Value	Semantics
		0	Always use buffer 0 index for display/capture
		1	Always use buffer 1 index for display/capture
		2	Alternating buffer 0 and buffer 1 indices for display/capture
	_	3	Reserved.
	Bits	Field	
	11:08	Buffer 2 I	
		Value	Semantics
	D:4-	0-FH Field	Index to surface base register array.
	Bits		
	07	vsync Se	lection (Only applied to back end display channel descriptors)
		0	Display 0 Vsync. <i>Default</i> . Display 1 Vsync
	Bits	Field	Display 1 vsylic
	06:04	Reserved.	
	03:00	Buffer 1 I	
		Value	Semantics
		0-FH	Index to surface base register array.

4.2.1.12.3 Y Offset Counters

This is the current value of the surface Y offset counter that is incremented every horizontal line and reinitialized at the beginning of every frame.

Offset	Field	Access	Function
+B0CH	31:00	R/O	Surface Offset Counter for Cursor 0 Channel
+B1CH	31:00	R/O	Surface Offset Counter for Icon Channel
+B2CH	31:00	R/O	Surface Offset Counter for Scaler 0 Channel
+B3CH	31:00	R/O	Surface Offset Counter for Display 0 Channel
+B6CH	31:00	R/O	Surface Offset Counter for Cursor 1 Channel
+ B7CH	31:00	R/O	Surface Offset Counter for Scaler 1 Channel
+B8CH	31:00	R/O	Surface Offset Counter for Display 1 Channel
+BDCH	31:00	R/O	Surface Offset Counter for Linear BLT
+BECH	31:00	R/O	Surface Offset Counter for Video Capture
	Bits	Field	
	31:28	Reserved.	
	27:16	Y Offset	Counter in pixel/line units.

15:00 Reserved.

4.2.1.13 Buffer Descriptors (+C00H)

The following registers provide a common definition of the base addresses, sizes and pointers of the DMA and FIFO buffers.

The base address of each buffer must be initialized before the rendering engine can start execution. The base address must be an even multiple of the buffer size.

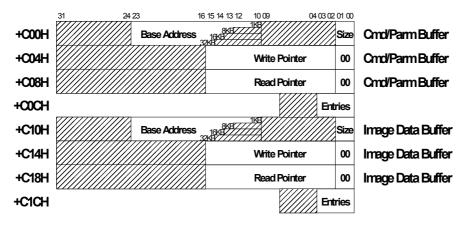


Figure 4-12. Buffer Descriptors

4.2.1.13.1 Buffer Base Address

Offset	Field	Access	Function			
+C00H	31:00	R/W	Command/Parameter Buffer Base Address			
+C10H	31:00	R/W	Image Data Buffer Base Address			
	Bits	Field				
	31:24	Reserved.				
	23:10	Base Add	ress. bits [23:10] of the Base Address in bytes.			
	09:02	Reserved.	Reserved.			
	01:00	Buffer Siz	Buffer Size.			
	Value Semantics					
		0	1KB.			
		1	8KB.			
		2	16KB.			
		3	32KB.			

The base addresses of each buffer must be set before writing any parameters/data or enabling the Rendering Engine. The read and write pointers should also be initialized to the same value (normally 0, the start of the buffer) to indicate that the FIFO is empty. After initialization, they should normally not be accessed, except for context switching or error recovery.

4.2.1.13.2 Buffer Pointers

Offset	Field	Access	Function		
+C04H	31:00	R/W	Command/Parameter Buffer Write Pointer		
+C08H	31:00	R/W	Command/Parameter Buffer Read Pointer		
+C14H	31:00	R/W	Image Data Buffer Write Pointer		
+C18H	31:00	R/W	Image Data Buffer Read Pointer		
	Bits	Field			
	31:16 Reserved.				
	15:00	Addres	s Pointer. In bytes, must be aligned to a natural doubleword boundary.		
		bits[01	:00] must be zero.		

The relationship between buffer size and valid bits of the base address and read/write pointers is shown in the table below:

Valid Bits							
[01:00]	Size	Base Address	Pointer	1/8	Status Subtract		
0	1KB	23:10	09:02	128	09:07		
1	8KB	23:13	12:02	1K	12:10		
2	16KB	23:14	13:02	2K	13:11		
3	32KB	23:15	14:02	4K	14:12		

Table 4-3. Cmd/Parm, Image Data Buffer

4.2.1.13.3 Engine FIFO Status

Offset	Field	Access	Function		
+C0CH	07:00	R/O	Command/Parameter FIFO		
+C1CH	07:00	R/O	Image Data FIFO		
	Bits	Field			
	07:04	Reserve	ed.		
	03:00	FIFO E	FIFO Entries Available, in eighths of the total allocated FIFO size (1K, 8K, 16K, 32K).		
-		Value	Semantics		
		8-0	Eighths (128B, 1KB, 2KB, 4KB corresponding to the above FIFO sizes).		
			The value ranges from 1/8 to 8/8.		
		15-9	Reserved.		

4.2.1.13.4

24 23 08 07 04 03 01 00 31 +C24H Write Pointer 0H Deferred +C28H Read Pointer 0H Control +C34H Write Pointer 0H **Pointers** +C38H **Read Pointer** 0H Address Pointer **00H** Host DMA / Local Memory +C44H Cursor Rec/Replay Status +CF0H EΝ **Display Rec /Replay Status** +CF4H Ε

Cursor/Display Parameter Record/Replay Control

4.2.1.13.5 Deferred Control Pointers

Offset	Field	Access	Function
+C24H	31:00	R/W	Deferred Control (Write) Pointer 0
+C28H	31:00	R/W	Deferred Control (Read) Pointer 0 Triggered by the leading edge of VBI.
+C34H	31:00	R/W	Deferred Control (Write) Pointer 1
+C38H	31:00	R/W	Deferred Control (Read) Pointer 1 Triggered by the leading edge of VBI
			after the Deferred Control 0 replay operation.
	Bits	Field	
	31:24	Reserved.	
	23:00	Address.	in bytes, must be aligned to a natural quadword boundary. bits[03:00] must
		be zero.	

4.2.1.13.6 Host DMA Bus Master Local Pointer

This is the local pointer for the Host DMA Bus Master. See registers at +200H.

Offset	Field	Access	Function
+C44H	31:00	R/W	Host DMA Local Memory Address Pointer
	Bits	Field	
	31:24	Reserved.	
	23:00	Address. i	n bytes, must be aligned to a natural 32 byte boundary. bits[04:00] must be
		zero.	

4.2.1.13.7 Deferred Control Status

Two byte registers are provided to control the operation of recording (write) and replay (read) of the cursor and display parameters. There are two read and two write pointers associated with the DMA that must also be initialized whenever the record operation is restarted.

Offset	Field	Access	Function
+CF0H	07:00	R/W	Deferred Control 0 Status
+CF4H	07:00	R/W	Deferred Control 1Status
	Bits	Field	
	07		eplay Enabled. A replay operation is pending. Reset when read.
		Value	Semantics
		0	The last posted Replay has been completed.
			The read and write pointers must be reinitialized before new parameters can
			be recorded.
		1	The last posted Replay is still pending.
			The read and write pointers must not be changed.
	Bits	Field	
	07	Write. E	nable Replay. A replay operation is pending.
		Value	Semantics
		0	Do not load parameters.
		1	Enable loading of parameters at the beginning of the next VBI.
	Bits	Field	
	06	VBI Sele	ction
		Value	Semantics
		0	Triggered by Display 0 VBI. Default.
		1	Triggered by Display 1 VBI.
	Bits	Field	
	05:01	Reserved	
	00	Read/On	ly. Replay Active.
		Value	Semantics
		0	Host access permitted. Either the posted parameter load operation has not
			been executed yet or it has been completed.
		1	Host access restricted. The posted operation is in progress.
		L	

Register Summary

4.2.1.14 Display Control (+D00H)

4.2.1.14.1 Channels

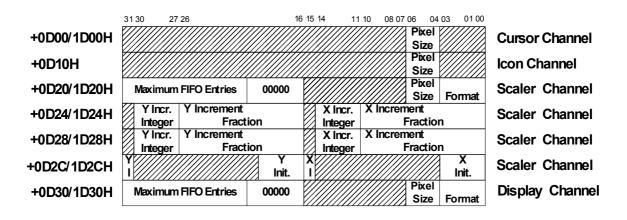


Figure 4-14. Channel Descriptors

Cursor Channels

Offset	Field	Access	Function
+0D00H	31:00	R/W	Cursor 0 Channel
+1D00H	31:00	R/W	Cursor 1 Channel
	Bits	Field	
	31:07	Reserved.	
	06:04	Channel I	Pixel Size. This should be set to match the pixel size of the surface being pro
		cessed.	
-		Value	Semantics
		0	Disabled. Takes effect immediately.
		1	1bpp.
		2-4	Reserved.
		5	16bpp.
		6-7	Reserved.
	Bits	Field	·
	03:00	Reserved.	

Icon Channel

Offset	Field	Access	Function
+0D10H	31:00	R/W	Icon Channel
	Bits	Field	
	31:07	Reserved.	
	06:04	Channel H	Pixel Size. This should be set to match the pixel size of the surface being pro
		cessed.	
		Value	Semantics
		0	Disabled. Takes effect immediately.
		1	1bpp.
		2-4	Reserved.
		5	16 bpp
		6-7	Reserved.
	Bits	Field	
	03:00	Reserved.	

Scaler Channels

Offset	Field	Access	Function
+0D20H	31:00	R/W	Scaler 0 Channel Format
+1D20H	31:00	R/W	Scaler 1 Channel Format
	Bits	Field	
	31:21		n number of FIFO requests per-scan line. Each FIFO entry contains 32B data.
		Value	Semantics
		0	Disabled. Default.
		п	<i>n</i> number of FIFO requests. This value is precomputed by software driver
			based on scaler format, stretch ratio and stride information
	Bits	Field	
	20:16	Reserved.	Must be zero.
	15:07	Reserved.	
	06:04	Channel F	Pixel Size. This should be set to match the pixel size of the surface being pro
		cessed.	
		Value	Semantics
		0	Disabled. takes effect immediately.
		1-4	Reserved
		5	16bpp. for interleaved 16b RGB formats.
		6	24bpp.
		7	Reserved
	Bits	Field	
	03:00	Channel F	Pixel Format. This should be set to match the pixel format of the surface
		being disp	olayed.
·		Value	Semantics
16bpp		0H	16bpp RGB 1.5.5.5.
		1H	16bpp xRGB 5.6.5.
		2-7H	Reserved.
16bpp	YUV	8H	16bpp YUV/CbCr 4.2.2 Interleaved. YUYV
		9H	16bpp YUV/CbCr 4.2.2 Interleaved. UYVY
		A-FH	Reserved.
24bpp	RGB	0H	24bpp RGB 8.8.8.
		1-FH	Reserved.

Scaler Channels (continued)

Offset	Field	Access	Function		
+0D24H	31:00	R/W	1st Scaler control, Y/R Channel Increment Values		
+1D24H	31:00	R/W	2nd Scaler control, Y/R Channel Increment Values		
+0D28H	31:00	R/W	1st Scaler control, U/V, G/B Channel Increment Values		
+1D28H	31:00	R/W	2nd Scaler control, U/V, G/B Channel Increment Values		
	Bits	Field			
	31	Reserved.			
	30:27	Y Increment. Integer part.			
	26:16	Y Increme	Y Increment. Fractional part.		
	bits	field			
	15	Reserved.			
	14:11	X Increment. Integer part.			
	10:00	X Increme	ent. Fractional part.		

Offset	Field	Access	Function
+0D2CH	31:00	R/W	1st Scaler control
+1D2CH	31:00	R/W	2nd Scaler control
	Bits	Field	
	31	Y Interpol	ation Control
		Value	Semantics
		0	Previous Neighbor
		1	Bilinear
	Bits	Field	
	30:20	Reserved	
	19:16	Initial Y v	value of U/V sub-channels, the sub-(fractional) pixel offset within the source
		plane.	
	15	X Interpol	ation Control
		Value	Semantics
		0	Previous Neighbor
		1	Bilinear
	Bits	Field	
	14:04	Reserved	
	03:00	Initial X v	value of U/V sub-channels, the sub-(fractional) pixel offset within the source
		plane.	

Display Channels

Offset	Field	Access	Function
+0D30H	31:00	R/W	1st Display Channel Format
+1D30H	31:00	R/W	2nd Display Channel Format
	Bits	Field	
	31:21		n number of FIFO requests per-scan line. Each FIFO entry contains 32B data.
		Value	Semantics
		0	Disabled. Default.
		n	n number of FIFO requests. This value is computed by software driver
			based on display format and stride information.
	Bits	Field	
	20:16		Must be zero.
	15:07	Reserved.	
	06:04	Channel F	Pixel Size. This should be set to match the pixel size of the surface being pro
		cessed.	<u> </u>
		Value	Semantics
		0	Disabled. Takes effect immediately.
		1-2	Reserved.
		3	4bpp.
		4	8bpp.
		5	16bpp.
		6	24bpp.
		7	32bpp.
	Bits	Field	
	03:00		Pixel Format. This should be set to match the pixel format of the surface
		being disp	played.
		Value	Semantics
4bpp		0	4bpp CLUT.
		1-7	Reserved.
8bpp		0	8bpp CLUT.
		1-7	Reserved.
16bpp		0	16bpp xRGB 1.5.5.5.
		1	16bpp RGB 5.6.5.
		2-7	Reserved.f
24bpp		0	24bpp RGB 8.8.8.
		1-7	Reserved.
32bpp		0	32bpp RGB x.8.8.8.
		1-7	Reserved.

4.2.1.14.2 Overlay/Mix Control

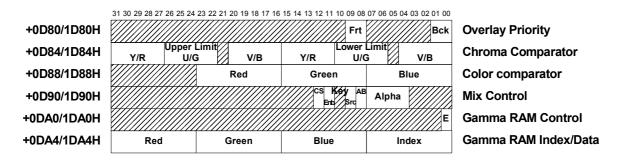


Figure 4-15. Overlay and Mix Controls

Overlay Priority Control

These registers define the priority of overlay when composing the result.

Offset	Field	Access	Function
+0D80H	31:00	R/W	1st Scaler/Display Overlay Priority Specification
+1D80H	31:00	R/W	2nd Scaler/Display Overlay Priority Specification
	Bits	Field	
	31:10	Reserved.	
	09:08	Foregroun	nd. Highest Priority Overlay
		Value	Semantics
		0	Scaler Channel
		1	Display Channel
		2-3	Reserved.
	Bits	Field	
	07:02	Reserved.	
	01:00	Backgrou	nd. Lowest Priority Overlay/Primary Surface.
		Value	Semantics
		0	Scaler Channel
		1	Display Channel
		2-3	Reserved.

Chroma Comparator

This register specifies the luma/chroma (YUV) values to be compared against the pixel stream for the corresponding surface. Luma/chroma comparison is performed on the output of the scaler (before the color space converter). A magnitude comparison is performed between output of the scaler against the upper and lower limits. Only 5 bits of Y, U and V are compared. If the comparisons of all three components against the set limits are satisfied the compare output is '1' and can be used to control chroma/color keying.

 $K = (P_Y \le UL_Y) \text{ and } (P_Y \ge LL_Y) \text{ and } (P_U \le UL_U) \text{ and } (P_U \ge LL_U) \text{ and } (P_V \le UL_Y) \text{ and } (P_V \ge LL_V)$

The comparison of any component can be disabled by setting the upper and lower limits to their maximum and minimum values, respectively, effectively matching all values. Normally the Y component is not compared. Setting the upper limit less than the lower limit for any component effectively disables the entire comparison.

The chroma comparator output is automatically used when keying is enabled for a YUV format surface.

Offset	Field	Access	Function		
+0D84H	31:00	R/W	Scaler 0 Channel Luma/Chroma Comparator		
+1D84H	31:00	R/W	Scaler 1 Channel Luma/Chroma Comparator		
	Bits	Field			
	31:27	Y/R Uppe	r Limit.		
	26:22	U/G Uppe	er Limit.		
	21	Reserved.	Reserved.		
	20:16	V/B Uppe	V/B Upper Limit.		
	15:11	Y/R Lowe	Y/R Lower Limit.		
	10:06	U/G Low	U/G Lower Limit.		
	05	Reserved.	Reserved.		
	04:00	V/B Lowe	er Limit.		

Color Comparator

Color comparison is performed using an equality comparator with a generated bit mask that selects the precision of the comparison.

Offset	Field	Access	Function		
+0D88H	31:00	R/W	Display 0 Color Comparator		
+1D88H	31:00	R/W	Display 1 Color Comparator		
	Bits	Field			
	31:24	Reserve	Reserved.		
	23:16	Red Co	Red Component.		
	15:08	Green C	Green Component.		
	07:00	Blue Co	omponent.		

Mix Control

These registers define the type of operations performed when composing the result. If the source or destination specified for the color comparison is a YUV surface, the chroma comparator result is used in place of the color comparator. *Key control* is valid only where two surfaces (in one mix operation) overlap.

Only one type of control source is allowed for each mix operation: color/chroma keying, control surface keying or blend or default blend or surface selection.

Offset	Field	Access	Function
+0D90H	31:00	R/W	Display 0 Mix Control
+1D90H	31:00	R/W	Display 1 Mix Control
	Bits	Field	
	31:12	Reserved.	
	11	Color Key	1
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
	Bits	Field	·
	10	Reserved.	
	09	Key Source	ce
		Value	Semantics
		0	Color Key Compare against Source/Foreground Channel. Default
		1	Color Key Compare against Destination/Background Channel.
	Bits	Field	
	08	Blend usin	ng constant Alpha value, bits [07:04]
		Value	Semantics
		0	Disable. Default
		1	Enable.
	Bits	Field	·
	07:04	Alpha Ble	end Constant
		Value	Semantics
		0H	Destination/Background only. Default
		1-7H	7% steps from Destination only
		8H	50% Source plus 50% Destination
		9-EH	7% steps to Source only
		FH	Source/Foreground only
	Bits	Field	·
	03:00	Reserved.	Must be zero.

Note: If the scaler channel is selected for color key comparison, and the format of the surface in the channel is YUV, the chroma comparator (before the color space converter) is used instead of the foreground or background color comparator.

Gamma Correction

The characteristics of displays and cameras are nonlinear. A small change in voltage when the voltage level is low produces a change in the output display brightness level, but the same small change in voltage at a high voltage level will not produce the same magnitude of change in the brightness output. This effect is known as gamma. The linear RGB data must be processed to compensate for the gamma of the display. Three 256x8 RAMs, one for each color component, is used to implement gamma correction.

Offset	Field	Access	Function		
+0DA0H	31:00	R/W	Display 0 Gamma RAM Control		
+1DA0H	31:00	R/W	Display 1 Gamma RAM Control		
	Bits	Field			
	31:01	Reserved.			
	00	Gamma C	Gamma Correction Enable		
-		Value	Semantics		
		0	Disabled/Bypass. Default.		
		1	Enabled.		

Offset	Field	Access	Function		
+0DA4H	31:00	R/W	Display 0 Gamma RAM Index/Data		
+1DA4H	31:00	R/W	Display 1 Gamma RAM Index/Data		
	Bits	Field			
	31:24	Red Color	Red Color Component		
	23:16	Green Co	Green Color Component		
	15:08	Blue Colo	Blue Color Component		
	07:00	Index	ndex		

4.2.1.14.3 Display Status/Control

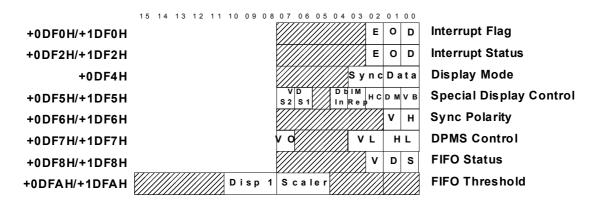


Figure 4-16. Display Control

Display Interrupt/Status

Offset	Field	Access	Function
+0DF0H	07:00	R/W	Display 0 Interrupt Flag
+1DF0H	07:00	R/W	Display 1 Interrupt Flag
+0DF2H	07:00	R/O	Display 0 Status. This returns the actual level of the pin or signal and is
			provided to allow real-time polling of the state of vertical blanking and the
			external vertical sync pin.
+1DF2H	07:00	R/O	Display 1 Status. This returns the actual level of the pin or signal and is
			provided to allow real-time polling of the state of vertical blanking and the
			external vertical sync pin.
	Bits	Field	
	07:02	Reserved.	
	01	V- Extern	al Video: Frame Vertical Sync derived from VVS pin on Video port, nomi-
		nally 30H	z rate.
	00	D - Displa	y Vertical Enable
		Value	Semantics
+XDF0H		0	Read. Sync/Blank event has not occurred.
+XDF0H		1	Read. Sync/Blank event has occurred.
+XDF0H		0	Write. No change.
+XDF0H		1	Write. Reset Corresponding Flag Bit.
		Value	Semantics
+XDF2H		0	Read. Input is not asserted/Display is inactive.
+XDF2H		1	Read. Input is asserted/Display is active.

Display Mode Set Control

These registers are loaded during mode set prior to enabling the display.

These registers control output to the physical LCD Controller and CRT Controller. The Back End VGA timing and data are inputs to the Display 0 Control, bits 3:2 and 1:0 select whether the output of the Display 0 Control is connected to the VGA or to its own output and timing. They should be set in the same way. Bit 4 selects whether the CRT takes its data and timing from the Display 0 Control or from the Display 1 Control. The Display 0 Control is not connected to the VGA, so the corresponding control bits effectively select between disable and its own output and timing.

Offset	Field	Access	Function
+0DF4H	07:00	R/W	Display 0 Control. Default is VGA
	Bits	Field	
	07	Reset D	isplay State Machine on VSync
		Value	Semantics
		0	Reset Display State Machine at Vertical Sync. Default.
		1	Do not Reset Display State Machine.
	Bits	Field	·
	06:05	Reserve	<i>d</i> .
	04	CRT Di	splay Select
		Value	Semantics
		0	CRT is connected to VGA/ECRTC0.
		1	CRT is connected to ECRTC1
	Bits	Field	
	03:02	Enhance	ed Display Timing. Selects the source of display timing signals.
		Value	Semantics
		0	VGA CRTC. Enhanced CRTC is disabled. <i>Default</i> .
		1	Enhanced CRTC.
		2-3	Reserved.
	Bits	Field	·
	01:00	Enhance	ed Display Output. Selects the source of display data.
		Value	Semantics
		0	Enable VGA. Default.
		1	Enable Enhanced Display Processor.
		2-3	Reserved.

Field	Access	Function
07:00	R/W	Display 1 Control. Default is disabled.
Bits	Field	
07	Reset D	isplay State Machine on VSync
	Value	Semantics
	0	Reset Display State Machine at Vertical Sync. Default.
	1	Do not Reset Display State Machine.
Bits	Field	
06:04	Reserve	<i>d</i> .
03:02	Enhance	ed Display Timing. Selects the source of display timing signals.
	Value	Semantics
	0	Enhanced CRTC is disabled. <i>Default</i> .
	1	Enhanced CRTC.
	2-3	Reserved.
Bits	Field	
01:00	Enhance	ed Display Output. Selects the source of display data.
	Value	Semantics
	0	Enhanced CRTC is disabled. <i>Default</i> .
	1	Enable Enhanced Display Processor.
	2-3	Reserved.
	07:00 Bits 07 Bits 06:04 03:02 Bits	07:00 R/W Bits Field 07 Reset D 01 Value 0 1 Bits Field 06:04 Reserve 03:02 Enhance 0 1 2-3 Field Bits Field 01:00 Enhance 01:00 Enhance 01 1 01 1

Special Display Control

Offset	Field	Access	Function
+0DF5H	07:00	R/W	Doublescan Display 0 Control.
+1DF5H	07:00	R/W	Doublescan Display 1 Control.
	Bits	Field	
	07:06	Display	Channel Double (vertical) Scan.
		Value	Semantics
		0	Disabled (1×). <i>Default</i> .
		1-2	Reserved.
		3	Enabled $(2\times)$.
	Bits	Field	
	05:04	Display	Channel Double (horizontal) Scan.
		Value	Semantics
		0	Disabled (1×). Default
		1-2	Reserved.
		3	Enabled (2×).
	Bits	Field	
	03:01	Reserve	d
	00	Scaler I	Double (horizontal) with interpolation.

Enhanced Sync Polarity

The polarity of the output sync signals are defined in one register.

Offset	Field	Access	Function		
+0DF6H	07:00	R/W	Display 0 Enhanced Sync Polarity		
+1DF6H	07:00	R/W	Display 1 Enhanced Sync Polarity		
	Bits	Field			
	07:02	Reserved.			
	01	Enhanced	Enhanced Vertical Sync Polarity.		
	00	Enhanced	Horizontal Sync Polarity.		
		Value	Value Semantics		
		0	Positive.		
		1	Negative.		

Display Power Management Control

These registers contain most of the power management control bits for the display and display sub-system. They override the polarity and value of the sync signals independent of which CRTC/ Display Timing Generator is selected. This allows monitor power management to be enabled without affecting the state of either sync generator or the display sub-system.

Offset	Field	Access	Function		
+0DF7H	07:00	R/W	Display 0 Power Management		
+1DF7H	07:00	R/W	Display 1 Power Management		
_	Bits	Field			
	07	Power Do	wn DAC. Saves approximately 57mA for power management.		
		Value	Semantics		
		0	Enabled, Normal Operation. Default.		
		1	Force DAC outputs to 0. Asserts PD# to DAC.		
	Bits	Field			
	06:04	Reserved			
	03:02	Vertical S	ync Level.		
	01:00	Horizonta	l Sync Level.		
		Value Semantics			
		0	Normal Operation. Default		
		1	Force to 0.		
	2 Force to 1.				
		3	Reserved.		

Display FIFO Status

Offset	Field	Access Function
+0DF8H	07:00	R/W Display 0 FIFO Status
	Bits	Field
	07:03	Reserved.
	02	Video capture FIFO overflow, Write.
		Value Semantics
		0 Reserved.
	_	1 Clear FIFO overflow status bit.
	Bits	Field
	02	Video capture FIFO overflow, Read.
		Value Semantics
		0 FIFO is operating normally.
		1 FIFO overflow. This bit is set by hardware
	Bits	Field
	01	Display channel FIFO overflow, Write.
		Value Semantics
		0 Reserved.
		1 Clear FIFO overflow status bit.
	Bits	Field
	01	Display channel FIFO overflow, Read.
		Value Semantics
		0 FIFO is operating normally.
		1 FIFO overflow. This bit is set by hardware
	Bits	Field
	00	Scaler channel FIFO overflow, Write.
		Value Semantics
		0 Reserved.
		1 Clear FIFO overflow status bit.
	Bits	Field
	00	Scaler channel FIFO overflow, Read.
		Value Semantics
		0 FIFO is operating normally.
		1 FIFO overflow. This bit is set by hardware

Offset	Field	Access Function
+1DF8H	07:00	R/W Display 1 FIFO Status
	Bits	Field
	07:02	Reserved.
	01	Display channel FIFO overflow, Write.
		Value Semantics
		0 Reserved.
		1 Clear FIFO overflow status bit.
	Bits	Field
	01	Display channel FIFO overflow, Read.
-		Value Semantics
		0 FIFO is operating normally.
		1 FIFO overflow. This bit is set by hardware
	Bits	Field
	00	Scaler channel FIFO overflow, Write.
-		Value Semantics
		0 Reserved.
		1 Clear FIFO overflow status bit.
	Bits	Field
	00	Scaler channel FIFO overflow, Read.
-		Value Semantics
		0 FIFO is operating normally.
		1 FIFO overflow. This bit is set by hardware

Display/Scaler FIFO Control

This specifies the configuration (size and threshold) of the display and scaler FIFOs.

Offset	Field	Access	Function
+0DFAH	15:00	R/W	Display 0 FIFO (lower) Thresholds.
+1DFAH	15:00	R/W	Display 1 FIFO (lower) Thresholds.
	Bits	Field	
	15:11	Reserved.	
	10:08	Display C	hannel FIFO (lower) Threshold
-		Value	Semantics
		0-7	Entries <i>remaining</i> . <i>Default</i> is 4 entries. Value + 1 = remaining entries.
	Bits	Field	
	07:05	Scaler Y G	Channel FIFO (lower) Threshold
-		Value	Semantics
		0-4	Entries <i>remaining</i> . <i>Default</i> is 4 entries.Value + 1 = remaining entries.
		5-7	Reserved.
	Bits	Field	•
	04:00	Reserved.	

Palette Read/Write State

This register reflects the state of the two-bit (three-state) address counter that sequences through the three color components of each palette entry. This should be saved if an interrupt occurs and the palette is changed due to an interrupt. It can later be restored to properly resume the palette access sequence.

Offset	Field	Access	Function
+0DFCH	07:00	R/W	Display 0 Palette Read/Write State
+1DFCH	07:00	R/W	Display 1 Palette Read/Write State
	Bits	Field	
	07:02	Reserve	<i>d</i> .
	01:00	Address	S Cycle.
-		Value	Semantics
		0	Idle, third access (blue) completed.
		1	First access (red) completed.
		2	Second access (green) completed.
		3	Reserved.

Register Summary

4.2.1.15 Display Viewports and Timing (+E00H)

There are two sets of display timing control registers: Enhanced CRTC and Display Viewports.

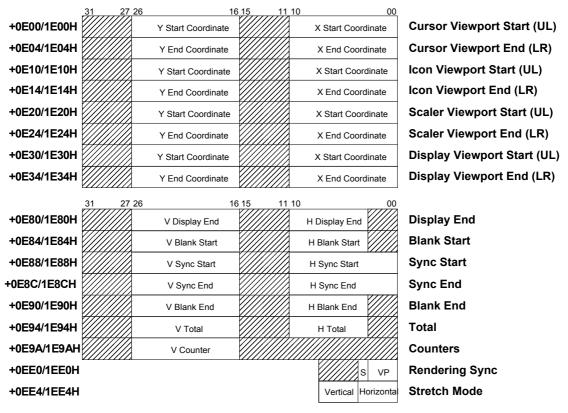


Figure 4-17. Display Viewports and Timing

4.2.1.15.1 Display Channel Viewports

The display channel viewports are defined by the coordinates of the upper left corner of the position on the screen and the lower right corner. The cursor viewport may have a size of 1,1, i.e., the lower right corner may be one pixel to the right and below the upper left corner. The coordinates may not extend beyond the edge of the active addressable display area. Coordinates may not be less than 0; if they exceed the active addressable display area, they will be clipped to the active display area.

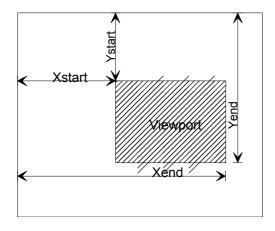


Figure 4-18. Viewport Definition

Start (Upper Left)

The viewport start is inclusive.

Offset	Field	Access	Function			
+0E00H	31:00	R/W	Cursor 0 Channel Viewport Start (Upper Left).			
+1E00H	31:00	R/W	Cursor 1 Channel Viewport Start (Upper Left).			
+0E10H	31:00	R/W	Icon Channel Viewport Start (Upper Left).			
+0E20H	31:00	R/W	Scaler 0 Channel Viewport Start (Upper Left).			
+1E20H	31:00	R/W	Scaler 1 Channel Viewport Start (Upper Left).			
+0E30H	31:00	R/W	Display 0 Channel Viewport Start (Upper Left).			
+1E30H	31:00	R/W	Display 1 Channel Viewport Start (Upper Left).			
	Bits	Field				
	31:27	Reserved.	Reserved.			
	26:16	Upper Y o	Upper Y coordinate in pixel/lines. Range from 0 to 2047.			
	15:11	Reserved.	Reserved.			
	10:00	Left X co	ordinate in pixels. Range from 0 to 2047.			

End (Lower Right)

The viewport end is exclusive.

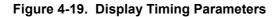
Offset	Field	Access	Function			
+0E04H	31:00	R/W	Cursor 0 Channel Viewport End (Lower Right).			
+1E04H	31:00	R/W	Cursor 1 Channel Viewport End (Lower Right).			
+0E14H	31:00	R/W	Icon Channel Viewport End (Lower Right).			
+0E24H	31:00	R/W	Scaler 0 Channel Viewport End (Lower Right).			
+1E24H	31:00	R/W	Scaler 1 Channel Viewport End (Lower Right).			
+0E34H	31:00	R/W	Display 0 Channel Viewport End (Lower Right).			
+1E34H	31:00	R/W	Display 1 Channel Viewport End (Lower Right).			
	Bits	Field				
	31:27	Reserved.	Reserved.			
	26:16	Lower Y	Lower Y coordinate in pixel/lines. Range from 0 to 2047.			
	15:11	Reserved.	Reserved.			
	10:00	Right X C	Coordinate in pixels. Range from 0 to 2047.			

Note:

The following restrictions must be followed in specifying the viewport start and end parameters:

- 1. A viewport (except the cursor) can have a minimum width of 2 characters (16 pixels).
- 2. The maximum width of a viewport is 255 characters plus 7 pixels = 2047 pixels.
- 3. The cursor viewport can have a minimum width of 1 pixel.
- 4. A viewport can have a minimum height of 1 line.
- 5. The maximum height of a viewport is 2047 lines.

If a viewport has a width or height less than the minimum, the corresponding display channel should be disabled.


4.2.1.15.2 Enhanced CRTC Timing

Vertical Timing

All timing is relative to the start (top; y = 0) of the addressable image area.

Offset	Field	Access	Function		
+0E82H	15:00	R/W	Display 0 Vertical Display End (of addressable image area)		
+1E82H	15:00	R/W	Display 1 Vertical Display End (of addressable image area)		
+0E86H	15:00	R/W	Display 0 Vertical Blank Start.(of Front Porch)		
+1E86H	15:00	R/W	Display 1 Vertical Blank Start (of Front Porch)		
+0E8AH	15:00	R/W	Display 0 Vertical Sync Start		
+1E8AH	15:00	R/W	Display 1 Vertical Sync Start		
+0E8EH	15:00	R/W	Display 0 Vertical Sync End		
+1E8EH	15:00	R/W	Display 1 Vertical Sync End		
+0E92H	15:00	R/W	Display 0 Vertical Blank End (of Back Porch)		
+1E92H	15:00	R/W	Display 1 Vertical Blank End (of Back Porch)		
1	Bits	Field			
		Reserved.			
	10:00		m start of addressable image area in scan lines.		
		Value	Semantics		
		0	Reserved.		
		1-2047	12047 lines		
Offset	Field	Access	Function		
+0E96H	15:00	R/W	First Vertical Total (of Back Porch).		
	15:00 15:00	R/W R/W			
+0E96H	15:00 15:00 <i>Bits</i>	R/W R/W Field	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch).		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved.	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch).		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved. Delay from	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines.		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved. Delay from Value	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved. Delay from Value 0	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved.		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved. Delay from Value	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved. Delay from Value 0	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved.		
+0E96H	15:00 15:00 <i>Bits</i> 15:11	R/W R/W Field Reserved. Delay from Value 0 1-2047	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines		
+0E96H	15:00 15:00 <i>Bits</i> 15:11 10:00	R/W R/W Field Reserved. Delay fro Value 0 1-2047	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines		
+0E96H	15:00 15:00 <i>Bits</i> 15:11 10:00	R/W R/W Field Reserved. Delay fro Value 0 1-2047 Tota Blank End	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines		
+0E96H	15:00 15:00 <i>Bits</i> 15:11 10:00	R/W R/W Field Reserved. Delay fro Value 0 1-2047 Tota Blank End	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines		
+0E96H	15:00 15:00 Bits 15:11 10:00	R/W R/W Field Delay frot Value 0 1-2047 Tota Blank Enco Sync Enco	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines		
+0E96H	15:00 15:00 Bits 15:11 10:00	R/W R/W Field Delay fro Value 0 1-2047 Tota Blank Enc Sync Enc Sync Star	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines		
+0E96H	15:00 15:00 Bits 15:11 10:00	R/W R/W Field Delay frot Value 0 1-2047 Tota Blank Enco Sync Enco	First Vertical Total (of Back Porch). Second Vertical Total (of Back Porch). m start of addressable image area in scan lines. Semantics Reserved. n+1, 22048 lines Image area Image area		

Horizontal Timing

The horizontal display timing parameters are defined in character positions counted from the left edge of the active display area (not including the right border). Horizontal Sync Start and End may be specified to pixel resolution to allow fine adjustment of the position of the addressable image area on the display.

The vertical display timing parameters are defined in scan line positions counted from the top edge of the active display area (not including the bottom border).

Restrictions

All timing is relative to the start (left edge) of the addressable image area. The following restrictions must be observed when setting the enhanced CRTC parameters:

			Actual			Register		
D	sym	Parameter	min	max	semantics	min	max	comments
V	St	VP Start	0	DE	а	0	DE	
V	En	VP End	St+2	DE	а	St+2	DE	
V	DE	Display End		T- <i>n</i>	а			
V	BS	Blank Start	DE+1		а	DE+1		Dot Border is Blank Start- Dis- play End, minimum is 0
V	SS	Sync Start	BS+1		а	BS+1		Front Porch is Sync Start- Blank Start, minimum is 1
V	SE	Sync End	SS+1		а	SS+1		minimum V Sync width is 1
V	BE	Blank End	SE+1		a	SE+1		
V	Т	V Total	BE	256	<i>a</i> -1	BE-1	255	Back Porch is Total-Blank
								End, minimum is 1
Η	St	VP Start	0	DE	а	0	DE	
Н	En	VP End	St+2	DE	а	St+2	DE	
Η	DE	Display End		T- <i>n</i>	a			
Η	BS	Blank Start	DE+1		а	DE+1		Right Border is Blank Start-
								Display End, minimum is 0
Н	SS	Sync Start	BS+1		а	BS+1		Front Porch is Sync Start-
								Blank Start, minimum is 1
Η	SE	Sync End	SS+4		а	SS+4		minimum H Sync width is 4
Η	BE	Blank End	SE+1		а	SE+1		
Η	Т	V Total	BE	256	<i>a</i> -1	BE-1	255	Back Porch is Total-Blank End, minimum is 1

Offset	Field	Access	Function
+0E80H	15:00	R/W	Display 0 Horizontal Display End (of addressable image area)
+1E80H	15:00	R/W	Display 1 Horizontal Display End (of addressable image area)
+0E84H	15:00	R/W	Display 0 Horizontal Blank Start (of Front Porch)
+1E84H	15:00	R/W	Display 1 Horizontal Blank Start (of Front Porch)
+0E90H	15:00	R/W	Display 0 Horizontal Blank End (of Back Porch)
+1E90H	15:00	R/W	Display 1 Horizontal Blank End (of Back Porch)
ſ	Bits	Field	
	15:11	Reserved.	
l	10:03	Value	m start of addressable image area in character units, (multiples of 8 pixels)
		0	Reserved
		1-255	1-255 character times.
	Bits	Field	
	02:00		Must be zero.
Offset	Field	Access	Function
+0E88H +1E88H	<u>15:00</u> 15:00	R/W R/W	Display 0 Horizontal Sync Start Display 1 Horizontal Sync Start
	15:00	R/W	Display 0 Horizontal Sync End Must be at least 4 greater than Sync Start,
+1E8CH	15:00	R/W	Display 0 Horizontal Sync End Must be at least 4 greater than Sync Start, Display 1 Horizontal Sync End Must be at least 4 greater than Sync Start,
·iLucii	Bits	Field	Display I Horizontal Synt Ena Mast de a loast i groater man Synt Start,
]	15:11	Reserved.	
	10:03		m start of addressable image area in character units (multiples of 8 pixels)
l	10.05	Value	Semantics
		0	Reserved.
		1-255	1255 characters
	Bits	Field	
]	02:00	Pixel adiu	stment, additional horizontal delay in pixel units. Allows fine positioning of
	02.00		y relative to the screen.
l		Value	Semantics
		0-7	07 pixel time additional delay.
Offset	Field	Access	Function
+0E94H	15:00	R/W	1st Horizontal Total
+1E94H	15:00	R/W	2nd Horizontal Total
-	Bits	Field	
	15:11	Reserved.	
	10:03		m start of addressable image area in character units -1, (multiples of 8 pixels)
		Value	Semantics
		0	Reserved.
	_	1-255	n+1, 2256 character times.
	Bits	Field	
l	02:00	Reserved.	Must be zero.

Vertical Counter

This register provides access to the display vertical (scan line) counter for software display synchronization. The display driver may read the current scan line to determine when and what portion of the displayed surfaces may be updated to avoid tearing artifacts.

Offset	Field	Access	Function
+0E9AH	15:00	R/O	Display 0 Vertical Counter
+1E9AH	15:00	R/O	Display 1Vertical Counter
	Bits	Field	
	15:11	Reserved.	
	10:00	Count of s	can line currently being displayed, incremented at the beginning of each scan
		line.	
		Value	Semantics
		0	First line of active display.
		1-2047	Line number of display, this continues to increment during the blanking
			interval and is reset to 0 at the end of vertical blanking.

Rendering Synchronization Selection

This register specifies the source of synchronization request to the 2D rendering engine. This may be the starting or ending line of any of the viewports.

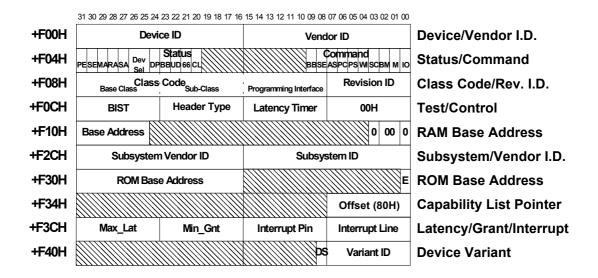
Offset	Field	Access	Function
+0EE0H	07:00	R/W	Display 0 Rendering Sync Selector
+1EE0H	07:00	R/W	Display 1 Rendering Sync Selector
	Bits	Field	
	07:04	Reserved.	
	03	Start/End S	elect.
		Value	Semantics
		0H	Start.
		1H	End.
	Bits	Field	
	02:00	Viewport S	elect
-		Value	Semantics
		0H	Always Enabled. Default. The 2D rendering engine will not wait for syn-
			chronization.
		1H	Reserved.
		2H	Scaler.
		3H	Display 1.
		4-7H	Reserved.

Stretch Mode

Offset	Field	Access	Function
+0EE4H	07:00	R/W	Display 0 Display Stretch Mode
+1EE4H	07:00	R/W	Display 1 Display Stretch Mode
	Bits	Field	
	07:04	Vertical S	tretch Mode
	03:00	Horizonta	l Stretch Mode
		Value	Semantics
		0H	No stretch. <i>Default</i> .
		1H	1 to 2 stretch
		2H	3 to 4 stretch
		3Н	4 to 5 stretch
		4H	5 to 8 stretch
		5H	Reserved
		6H	16 to 25 stretch
	7H		25 to 32 stretch
		8H	75 to 128 stretch
		9H-FH	Reserved.

X and Y can independently stretch. No support for 400x300 to 1024x768 or 400x300 to 1280x1024.

Original Format	Stretched Format	xEE4
400x300	640x480	44H
400x300	800x600	11H
512x384	640x480	33H
512x384	800x600	66H
512x384	1024x768	11H
640x480	800x600	33H
640x480	1024x768	44H
640x480	1280x1024	51H
800x600	1024x768	77H
800x600	1280x1024	84H
1024x768	1280x1024	23H


Table 4-4.	Stretch	Programming
------------	---------	-------------

4.2.1.16 PCI/AGP Configuration Registers (+F00H)

The 256-byte PCI Configuration Space is accessible using PCI configuration cycles and is also memory-mapped into the control register space where it can be read directly by the display driver at an offset to the PCI Configuration base of F00H. The first 40H bytes are pre-allocated/defined in the PCI configuration specification. The remaining C0H bytes are vendor/device specific and a few registers are used.

AGP uses a linked list structure within the remaining C0H bytes of the vendor specific register space. This is pointed to by an additional register defined in the standard PCI space and enabled by an additional bit in the status register.

	31 30 29 28 27 26 25 24	<u>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</u>						
+F80H		Major Minor	Pointer to Next	Capability ID	Capability Identifier			
+F84H	Request Depth		S B A		AGP Status Register			
+F88H	Request Depth		S A B G A P	4 F Data G w Rate	AGP Command Register			
+FA0H	31 30 29 28 27 26 25 24 PME D D Support 2 1		5 15 14 13 12 11 10 09 08 Pointer to Next	07 06 05 04 03 02 01 00 Capability ID	Power Management Capability			

Figure 4-20. PCI Configuration Registers

Data Select ab

Data

Scale

Power Management

Control

Power

State

+FA4H

Power Consumption CC

Report Data

Device/Vendor ID

Offset	Field	Access Function
+F00H	15:00	R/O Device/Vendor ID
	Bits	Field
	31:16	Device ID
		Value Semantics
		4831H ASCII for 'H1', SM3110
	Bits	Field
	15:00	Vendor ID
		Value Semantics
		8888H Silicon Magic.

Command

Offset	Field	Access Function	
+F04H	15:00	R/W Command	
	Bits	Field	
	15:10	Reserved. Read as '0'	
	- 09	Fast Back to Back Enable. Read as '0'	
	08	SERR#, Read as '0'	
	07	Address Stepping, Read as '0'	
	06	Parity Check, default to '0'	
	05 Palette Snooping, Read as '0'		
	04 Memory Write and Invalidate, Read as '0'		
	03 Special Cycle Support, Read as '0'		
	02 PCI Bus Master, default to '0'		
	01 Memory Space, default to '0'		
	00	I/O Space, default to '0'	

Status

Offset	Field	Access Function
+F06H	15:00	R/W Status
	Bits	Field
	15	Detected Parity Error. <i>default</i> to '0'
	14	Signaled SERR#. default to '0'
	13	Received Master Abort. <i>default</i> to '0'
	12	Received Target Abort. default to '0'
	11	Signaled Target Abort. <i>default</i> to '0'
	10:09	Read/Only. DEVSEL# timing. Slowest that any DEVSEL response may take.
		Value Semantics
		1 Medium - during second clock after FRAME# asserted.
	bits	field
	08	Data Parity Detected. <i>default</i> to '0'
	07	Fast Back to Back Capable. Read as '0'
	06	User Defined Features. Read as '0'.
	05	66MHz Capable. Read as '1'
	04	Capability List. Extended Capabilities
		Value Semantics
		1 AGP/ACPI Capable. Register 34H points to Extended Capabilities Data
		Structure
	bits	field
	03:00	Reserved. Read as '0'

Class/Revision

Offset	Field	Access Function
+F08H	31:00	RO Class Code/Revision ID
	Bits	Field
	31:24	Base Class
		Value Semantics
		03H Display Controller
	Bits	Field
	23:16	Sub-Class
		Value Semantics
		00H VGA Compatible
	Bits	Field
	15:08	Programming Interface
		Value Semantics
		00H Not applicable
	Bits	Field
	07:00	Revision ID
		Value Semantics
		0003H Revision Code (a,b,c)

Test

Offset	Field	Access	Function
+F0CH	31:00	R/W	Test/Control
	Bits	Field	
	31:24	BIST Ca	pability
		Value S	emantics
		00H N	Not capable.
	bits	field	
	23:16	Header T	ype, default to 00H (Read-only).
	15:08	Latency '	Timer, default to 00H.
	07:00	Reserved	'. Read as '0'.

RAM/ROM Base

Offset	Field	Access Function
+F10H	31:00	R/W RAM Base Address
	Bits	Field
	31:27	Base Address (128MB space)
	26:04	Reserved. Read as '0'.
	03	Prefetchable. Read as zero.
		Value Semantics
		0 Not Prefetchable.
	Bits	Field
	02:01	Type. Read as zero.
		Value Semantics
		0 Locate anywhere in 32 bit address space.
	Bits	Field
	00	Base Address Type. Read as zero.
		Value Semantics
		0 Memory Space Indicator.

Offset	Field	Access	Function
+F14H	31:00	R/O	Reserved
+F28H			

Subsystem ID

The Subsystem ID and System Vendor ID are writable in the extended register space, but readonly in the PCI configuration space. At Reset, they are loaded from ROM addresses 0034, 0035, 0036 AND 0037. The data are then written to the registers below (F2C, F2D, F2E and F2F, respectively).

Offset	Field	Access	Function
+F2CH	15:00	R/W	Subsystem ID
	Bits	Field	
	15:00	ID, defau	ılt to 0000H.
Offset	Field	Access	Function
+F2EH	15:00	R/W	Subsystem Vendor ID
	bits	field	
	15:00	ID, defau	ılt to 0000H.

ROM Base

Offset	Field	Access	Function
+F30H	31:00	R/W	ROM Base Address
	Bits	Field	
	31:15	ROM B	ase Address
	14:01	Reserved	d. Must be zero
	00	ROM E	nable
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
Offset	Field	Access	Function
+F38H	31:00	R/O	Reserved. Read as zero.

Capability List Pointer

Offset	Field	Access	Function
+F34H	31:00	R/O	CAP_PTR, the Capability List Pointer
	Bits	Field	
	31:08	Reserved	
	07:00	Capability List Pointer, byte offset into PCI configuration space where the capabil-	
		ity list sta	arts. Read as 80H.

Bus Arbitration and Interrupt

Offset	Field	Access Function
+F3CH	31:00	R/W Bus Arbitration and Interrupt
	Bits	Field
	31:24	Maximum Latency. Specified in units of 0.25µS, assuming the system is operating
		at 33MHz.
		Value Semantics
		1 Read/Only . 0.25μS.
	Bits	Field
	23:16	Minimum Grant. Specified in units of 0.25µS, assuming the system is operating at
		33MHz.
		Value Semantics
		4 Read/Only . 1.00μS.
	Bits	Field
	15:08	Interrupt Pin
		Value Semantics
		1 Read/Only . Interrupt A.
	Bits	Field
	07:00	Interrupt Line
		Value Semantics
		1 Read/Write . Specifies to which interrupt line/level (0-FH) the interrupt will
		be routed.

Device Variant

Offset	Field	Access	Function
+F40H	07:00	R/O	Variant Descriptor
	Bits	Field	
	07:00	Revision	n ID.
		Value	Semantics
		0	Default.
Offset	Field	Access	Function
+F41H	07:00	R/W	Transfer Characteristics
_	Bits	Field	
	07	3C6h, 3	C7h, 3CEh, 3CFh access in enhanced mode
		Value	Semantics
		0	Disabled. <i>Default</i> .
		1	Enabled.
	06:03	Reserved	<i>d.</i>
	02	Burst Tr	ansfers: All transactions.
	01	Burst Tr	ansfers: Transactions to internal memory.
		Value	Semantics
		0	Burst Allowed. <i>Default</i> .
		1	Burst Not Allowed, Single Transfers only.
	Bits	Field	

-					
	00	DEVSEL Timing for linear (memory mapped) address space.			
		Value	Semantics		
		0	Medium. 1 wait-state. Default.		
		1	Fast. 0 wait-states.		

AGP Extensions

As defined in AGP Spec Revision 2.0, December 10, 1997

Offset	Field	Access Function
+F80H		R/O Capability Identifier Register
	Bits	Field
		Reserved.
	23:20	MAJOR. Revision Number. Read as 2.
	19:16	MINOR. Revision Number. Read as 0.
	15:08	NEXT_PTR . Pointer to next item in capabilities list. Read as A0H.
	07:00	CAP_ID. Read as 02H.
Offset	Field	Access Function
+F84H	31:00	R/O AGP Status Register
	Bits	Field
	31:24	RQ_DEPTH. Maximum number of AGP command requests this device can gener-
		ate.
	23:10	Reserved. Read as 0.
	09	SBA. Side Band Addressing. Read as 1.
	08:06	Reserved. Read as '000'.
	05	4 GB Support. Read As 0.
	04	Fast Write Support. Read As 0.
	03	Reserved. Read as 0.
	02:00	RATE. Read as 011B.
Offset	Field	Access Function
+F88H		R/W AGP Command Register. <i>Default</i> to 0.
	Bits	Field
	31:24	RQ_DEPTH . Maximum number of AGP command requests this device is allowed
		to generate.
	23:10	Reserved. Read as 0.
	09	SBA_ENABLE . Side Band Addressing. Default as 0
	08	AGP_ENABLE. Side Band Addressing. Default as 0.
	07:06	Reserved. Read as '00'.
	05	4 GB Support. Default As 0.
	04	Fast Write Support. Default As 0.
	03	Reserved. Read as 0.
	02:00	DATA_RATE. Default as '000'.

Power Management Register Block

As defined in PCI Bus Power Management Interface Specification Revision 1.0, March 18, 1996.

Offset	Field	Access Function
+FA0H	31:00	R/O Power Management Capability Register
	Bits	Field
	31:27	PME_Support. Read as '01111'
	26	D2_Support. Read as 1.
	25	D1_Support. Read as 1.
	24:22	AUXILARY POWER SOURCE. Read as 000.
	21	Device Specific Initialization. Read as 0.
	20	RESERVED. Read as 0.
	19	PME CLOCK. Read as 1.
		VERSION Revision Number. Read as 001.
		NEXT_PTR . Pointer to next item in capabilities list. Read as 00H. Final Item.
		CAP_ID. Read as 01H.
Offset	Field	Access Function
+FA4H	31:00 Bits	R/W Power Management Control/Status Register
	31:24	Power consumption/dissipation reporting data register. Read as '00000000'
	23	BPCC Enable. Read as 0.
	23	B2 B3# (B2/B3 support for D3 hot) . Read as 0.
		Reserved. Read as "000000".
	15	PME Status for D3 cold. Default as 0.
	14:13	Data Scale. Read as '00'.
	12:09	Data Select. Default '0000'.
	08	PME_Enable from D3 cold.
		Value Semantics
		0 Disable. <i>Default</i>
		1 Enable
	Bits	Field
	07:02	Reserved. Read as '000000'
	01:00	Power State
		Value Semantics
		0 D0. Default
		1 D1
		2 D2
		3 D3

4.2.2 3D Control (1FF3000H)

The 3D control registers occupy a 4KB region within the control address space, as shown in Table 4-1. They are organized into 10 sub-regions of 64B each, according to their major functions. Beyond these control registers are 6 sub-regions defined for local storage of data used in 3D operations. All of these sub-regions are shown in the Table 4-5, below. All are accessed with byte resolution.

Register addresses below are shown as a 12-bit offset designated "+*xxx*H" within the 4KB 3D control register address space.

Register Type	Offset	Size	Access	Comments
Command Decode Unit (CDU)	000H	64B	byte	
Triangle Setup Unit (TSU)	040H	64B	byte	
Edge-Walking Unit (EWU)	080H	64B	byte	
Texture Memory Unit (TMU)	0C0H	64B	byte	
Z-Buffer Unit (ZBU)	100H	64B	byte	
Per-Fragment Unit (PFU)	140H	64B	byte	
Memory Interface Unit (MIU)	180H	64B	byte	
Direct Memory Access (DMA)	1C0H	64B	byte	
Reserved	200H	256B	byte	
Motion Compensation (MC)	300H	64B	byte	
Reserved	340H	192B	byte	
Stipple Mask Array	400H	128B	byte	
Texture Map LOD Array	580H	44B	byte	
Temp. Array (Triangle Setup)	5C0H	64B	byte	
Vertex List Array	600H	512B	byte	
Edge List Array	800H	1024B	byte	
Texture Palette Array	C00H	1024B	byte	

Another way to visualize the 3D register addresses is shown in Figure 4-21 below

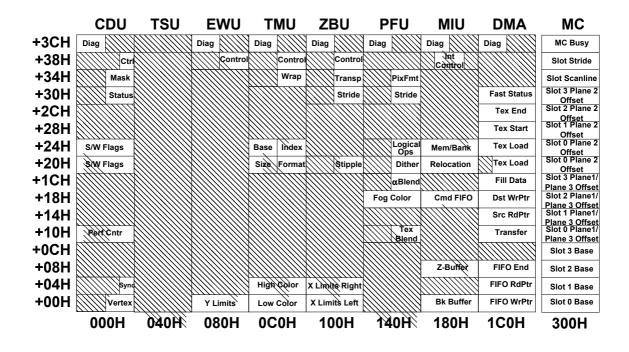


Figure 4-21. 3D Control Register Map

4.2.2.1 Command Decode Unit (+000H)

Vertex Format

Offset	Field	Access	Function
+000H	15:00	R/W	Vertex Information (amount of information)
	Bits	Field	
	15:08	Reserved	
	07:06		exture Type.
		Value	Semantics
		0	None. Default.
		1	UV.
		2	UVW.
		3	UVWMIP.
	Bits	Field	
	05		pordinate Format.
		Value	Semantics
		0	Floating Point, IEEE Single Precision 1.8.23.
		1	Fixed Point, 0.11.21.
	Bits	Field	
	04	Vertex Fc	
		Value	Semantics
		0	Disable. Default.
		1	Enable.
	Bits	Field	
	03	Vertex Sp	
		Value	Semantics
		0	Disable. Default.
		1	Enable.
	Bits	Field	
	02	Vertex Co	
		Value	Semantics
		0	XY.
	_	1	XYZ.
	Bits	Field	
	01:00	Vertex Co	
		Value	Semantics
		0	No Color.
		1	RGB
		2	ARGB.
		3	Reserved.

Intertriangle synchronization

The SM3110 3D pipeline does not detect read-after-write (RAW) hazards, which can cause stale data to be read unless the read is stalled or a bypass path is available. The SM3110 implements a stall, but using triangle bounding boxes, in the Triangle Setup Unit. This relies on the very long processing time for a triangle (80+ cycles), to prevent more than two triangles from being processed simultaneously by the pipeline, which allows the bounding box test to be applied only to the previous triangle.

Offset	Field	Access	Function			
+004H	07:00	R/W	Intertriangle synchronization			
	Bits	Field				
	07:02	Reserved.	Read as zero.			
	01	Per Fragn	Per Fragment Unit.			
	00	Z-Bufferi	Z-Buffering Unit.			
		Value	Semantics			
		0	Do not stall. <i>Default</i> .			
		1	Stall until unit idle.			

Performance Counter

	Offset	Field	Access	Function	
+	-010H	31:00	R/W	Performance counter. increments whenever an input clock pulse	is
				received.	
		Bits	Field		
		31:00	Counter.	used for performance analysis, visibility control. Range is 51 secs at 83MHz	Ζ.

Driver Flags

Offset	Field	Access	Function
+024H	15:00	R/W	Driver Flags
+026H	15:00	R/W	Driver Flags
	Bits	Field	
	15:01	Reserved.	
	00	Flag.	

Status

Multiple status flags and/or values are accessible through this single register.

Offset	Field	Access Function		
+030H	15:00	R/O Status		
	Bits	Field		
	15	Driver Flag @ Register 026H bit [00].		
	14	Driver Flag @ Register 024H bit [00].		
	13	2D Signal @ Register 022H bit [00].		
	12	2D Synchronization @ Register 020H bit [00].		
	11	Format Conversion.		
	10	Motion Compensation.		
	09	3D Engine Busy. Value Semantics		
		0 Idle, completed all commands and no pending memory accesses. <i>Default</i> .		
		1 Busy, either executing a command or pending completion of a memory		
		access).		
	D:/	This is an OR of all of the unit status bits. Field		
	Bits			
	08	Running. Value Semantics		
		0 Stopped (State), in response to the run bit being deasserted or after reset.		
		Default. 1 Running (State), either idle awaiting commands or busy processing a com-		
	Bits	Field		
	07	Direct Memory Access.		
	06	3D Command FIFO.		
•	00	Per Fragment Unit.		
	03	Z-Buffering Unit.		
	03	Texture Mapping Unit.		
	02	Edge Walking Unit.		
•	01	Triangle Setup Unit.		
	00	Command Decode Unit.		
	~~	Value Semantics		
		0 Idle, completed all commands and no pending memory accesses.		
		1 Busy, either executing a command or pending completion of a memory		
		access).		
		L		

Control

Offset	Field	Access	Function
+038H	07:00	R/W	3D Rendering Engine
	Bits	Field	
	07	Reset.	
		Value	Semantics
		0	Normal Operation.
		1	Reset, terminates current operation in progress and resets the engine.
			Default.
			When deasserted it will left in a Stopped state.
	Bits	Field	
	06:03	Reserved.	Read as zero.
	02	Pixel zero	fill
		Value	Semantics
		0	Disabled. Default.
		1	Enabled. (When X or Y are less than 0.5, force to zero)
	Bits	Field	•
	01	Execute/Si	ngle Step. The command specified in the flags register is executed. The bit
		is reset upo	on completion of one command. This is ignored if the Run bit is set.
		Value	Semantics
		0	Normal Execution. Default.
		1	Execute Single Command.
	Bits	Field	·
	00	Start. This	s bit is sampled only between command execution boundaries. If it is deas-
		serted, then	n reasserted while a command is executing it will not cause any change.
		Value	Semantics
		0	Stop (Request). Stop after the end of the current command. <i>Default</i> .
			This can also be reset by a command issued through the engine FIFO.
		1	Start (Request). Start execution (if any commands are pending in the
			FIFO).
		Value 0	Stop (Request). Stop after the end of the current command. <i>Default</i> . This can also be reset by a command issued through the engine FIFO. Start (Request). Start execution (if any commands are pending in th

3D Engine Diagnostic Port Control

Offset	Field	Access	Function
+03EH	15:00	R/W	Diagnostic Port Control.
	Bits	Field	
	15:12	Reserved.	Read as zero.
	11	Performan	nce Counter Enable.
		Value	Semantics
		0	Disabled. Default.
		1	Enabled. Resets to Zero when enabled.
	Bits	Field	
	10:08	Select Per	formance Counter Source.
		Value	Semantics
		0-7	Selects bit of Diagnostic Port to be used as count enable for Performance
			Counter.
	Bits	Field	
	07:04	Selects dia	agnostic information to be accessed from Triangle Setup Unit.
		Value	Semantics
		0	Bypass output of previous unit. Default.
		1-FH	Select diagnostic signals.
	Bits	Field	
	03:00	Selects dia	agnostic information to be accessed from CDU.
		Value	Semantics
		0	Bypass output of previous unit. Default.
		1-FH	Select diagnostic signals.

4.2.2.2 Triangle Setup Unit (+040H)

4.2.2.3 Edge-Walking Unit (+080H)

Vertical Viewport Limits

Offset	Field	Access	Function		
+080H	15:00	R/W	Ymin -Viewport Top Edge		
+082H	15:00	R/W	Ymax - Viewport Bottom Edge		
	Bits	Field			
	15:11	Reserved.			
	10:00	Coordina	Coordinate. specifies the actual pixel at the edge of the viewport (inclusive).		

Control

Offset	Field	Access	Function
+0B8H	15:00	R/W	Control
	Bits	Field	
	15:08	Reserved.	
	07	Scissors. (shadowed in Z-Buffering Unit).
	06		hadowed in Triangle Setup Unit, Z-Buffering Unit, Per Fragment Unit).
	05	Perspective	Correction Enable (shadowed in Triangle Setup Unit).
	04		ng. (shadowed in Triangle Setup Unit).
	03	Subpixel D	isplacement (shadowed in Triangle Setup Unit).
	02	Specular (s	hadowed in Triangle Setup Unit, Per Fragment Unit).
	01	Fog (shado	wed in Triangle Setup Unit, Per Fragment Unit).
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
	Bits	Field	
	00	Flat Shadin	g (shadowed in Triangle Setup Unit).
		Value	Semantics
		0	Smooth Shading. Default.
		1	Flat Shading.

Diagnostic Port Control

Offset	Field	Access	Function
+0BEH	15:00	R/W	Diagnostic Port Control
	Bits	Field	
	15:08	Reserved.	
	07:04	Read as ze	r0.
	03:00	Selects dia	gnostic information to be accessed.
		Value	Semantics
		0	Bypass output of previous unit. Default.
		1-FH	Select diagnostic signals.

4.2.2.4 Texture Mapping Unit (+0C0H)

Texture Transparent Color

Offset	Field	Access	Function	
+0C0H	31:00	R/W	Lower Bound	
+0C4H	31:00	R/W	Upper Bound	
	Bits	Field		
	31:24	Reserved.	Read as zero.	
	23:16	Red.		
	15:08	Green.		
	07:00	Blue/Inde	x. This byte contains the CLUT index if the comparison is done against the	
		palettized	texture.	

Texture Format

Offset	Field	Access	Function
+0E0H	15:00	R/W	Texel Format, shadowed in Per Fragment Unit
	Bits	Field	
	15:04	Reserved.	Read as zero.
	03:00	Texel For	mat.
		Value	Semantics
		0	CLUT 1 (2 color palette)
		1	CLUT 2 (4 color palette)
		2	CLUT 4 (16 color palette)
		3	CLUT 8 (256 color palette)
		4	Reserved
		5	RGB x.5.5.5
		6	RGB 5.6.5
		7	Reserved.
		8-AH	Reserved.
		BH	Reserved.
		СН	ARGB 4.4.4.4
		DH	ARGB 1.5.5.5
		EH	Reserved.
		FH	Reserved.

Texture Map Size

Offset	Field	Access	Function
+0E2H	15:00	R/W	Texture Map Size
	Bits	Field	
	15:12	Reserve	ed.
	11:08	U - Tex	tture Map Size
		Value	Semantics
		0-10	Ceiling of Log ₂ (Texture_Map_Size)
		11-15	Reserved.
	Bits	Field	·
	07:04	Reserve	ed.
	03:00	V - Tex	ture Map Size
		Value	Semantics
		0-10	Ceiling of Log ₂ (Texture_Map_Size)
		11-15	Reserved.

Texture Palette Index

Offset	Field	Access Function		
+0E4H	15:00	R/W Palette Index Offset		
	Bits	Field		
	15:08	08 Reserved.		
	07:00	Offset into Palette Array.		

Texture Base Address

Offset	Field	Access	Function		
+0E6H	15:00	R/W	Texel Base Page Address		
	Bits	Field			
	15:14	Reserve	Reserved.		
	13:03	Page (2	Page (2KB) Address of the first texel of the current texture map or mip-map.		
	02:00	Reserve	ed.		

Texture Wrap

Field	Access	Function
15:00	R/W	Texture Wrap
Bits	Field	
15:10	Reserved.	Read as zero.
07:02	Reserved.	Read as zero.
09:08	U Wrap N	1ode.
01:00	V Wrap N	1ode.
	Value	Semantics
	0	Clamp.
	1	Repeat.
	2	Mirror.
	3	Reserved.
	15:00 Bits 15:10 07:02 09:08	15:00 R/W Bits Field 15:10 Reserved. 07:02 Reserved. 09:08 U Wrap N 01:00 V Wrap N Value 0 1 2

Texture Control

To properly sample a texture, you need to align the texture samples with the midpoint between the coordinate grid to pixels which are sampled at the midpoint (center) of the coordinate grid.

Offset	Field	Access	Function
+0F8H	07:00	R/W	Texture Interpolation Control
	Bits	Field	
	07	Alpha 7	
		Value	Semantics
		0	No alpha test. Default.
	_	1	Perform alpha test (if texel alpha is zero, make pixel transparent).
	Bits	Field	
	06		ampling.
		Value	Semantics
		0	Textures are sampled at upper left corner. Default.
		1	Textures are sampled at center.
	Bits	Field	
	05:04		arent Mode.
		Value	Semantics
		0	Nearest Index.
		1	Nearest Color.
		2	Filtered Color.
		3	Reserved.
	Bits	Field	
	03:02	Reserve	
	01		ation between mipmapped levels.
		Value	Semantics
		0	Nearest Neighbor.
	_	1	Linear.
	Bits	Field	
	00		ation in UV space.
		Value	Semantics
		0	Nearest Neighbor.
		1	Bilinear.

Diagnostic Port Control

Offset	Field	Access	Function
+0FEH	15:00	R/W	Diagnostic Port Control
	Bits	Field	
	15:04	Reserved.	Read as zero.
	03:00	Selects dia	gnostic information to be accessed.
		Value	Semantics
		0	Bypass output of previous unit. Default.
		1-FH	Select diagnostic signals.

4.2.2.5 Z Buffer Unit (+100H)

Horizontal Viewport Limits

Offset	Field	Access	Function
+100H	15:00	R/W	Xmin - Viewport Left Edge
+102H	15:00	R/W	Xmax - Viewport Right Edge
	Bits	Field	
	15:11	Reserved.	
	10:00	Coordina	te which specifies the actual pixel at the edge of the viewport (inclusive).

Stipple

Offset	Field	Access Function
+120H	15:00	R/W Stipple
	Bits	Field
	15	Enable
		Value Semantics
		0 Disabled. <i>Default</i> .
		1 Enabled.
	Bits	Field
	14	Reserved. Read as zero.
	13	Reserved.
	12:08	Y Stipple Pattern Offset
	07:06	Reserved. Read as zero.
	05	Reserved.
	04:00	X Stipple Pattern Offset

Z Buffer Stride

Offset	Field	Access	Function
+130H	15:00	R/W	Z Buffer Stride
	Bits	Field	
	15	Z Tiling Eı	nable.
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
	Bits	Field	
	14:11	Reserved.	Read as zero.
	10:04	Screen stri	de in multiples of 16 pixels.
	03:00	Reserved.	Read as zero.

Texture Transparency

Offset	Field	Access	Function
+134H	15:00	R/W	Texture Transparency Enable
	Bits	Field	
	15:01	Reserved.	
	00	Enable.	
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.

Control

Offset	Field	Access	Function
+138H	15:00	R/W	Z Buffer Control
	Bits	Field	
	15:05	Reserve	ed. Read as zero.
	04	Z Buffe	r Write Enable.
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
	Bits	Field	
	03	Enable	Z Test.
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
	Bits	Field	
	02:00	Z Test I	Function.
		Value	Semantics
		0	Never Pass
		1	$Z \le destination Pixel Z$
		2	Z < destination Pixel Z
		3	Z > destination Pixel Z
		4	Z > = destination Pixel Z
		5	Z = = destination Pixel Z
		6	$Z \neq$ destination Pixel Z
		7	Always Pass

Diagnostic Port Control

Offset	Field	Access	Function		
+13EH	15:00	R/W	Diagnostic Port Control		
	Bits	Field			
	15:04	Reserved.			
	03:00	Selects dia	Selects diagnostic information to be accessed.		
-		Value	Value Semantics		
		0	Bypass output of previous unit. Default.		
		1-FH	Select diagnostic signals.		

4.2.2.6 Per Fragment Unit (+140H)

Texture Blend

Offset	Field	Access	Function
+150H	15:00	R/W	Texture Blend
	Bits	Field	
	15:09		Read as zero.
	08	Texture B	lend. Shadowed in Z-Buffering Unit.
		Value	Semantics
		0	Disabled. Default.
		1	Enable.
	Bits	Field	
	07:06	Reserved.	
	05:04	Texture B	lend Alpha Mode.
		Value	Semantics
		0	Сору.
		1	Modulate.
		2	Off.
		3	One.
	Bits	Field	
	03	Reserved.	
	02:00	Texture B	lend Color Mode.
		Value	Semantics
		0	Decal.
		1	Modulate.
		2	Decal, Alpha.
		3	Reserved.
		4	Decal, Mask.
		5	Modulate, Mask.
		6	Add, Clamp.
		7	Reserved.
		L	

Fog Color

Offset	Field	Access	Function
+158H	31:00	R/W	Fog Color
	Bits	Field	
	31:24	Reserved	. Read as zero.
	23:16	Red.	
	15:08	Green.	
	07:00	Blue.	

Alpha Blend

Offset	Field	Access	Function		
+15CH	15:00	R/W	Alpha Blend Control		
,	Bits	Field			
	15:10	Reserved.			
	09	Alpha Ble			
	08		sha Component. Shadowed in Edge Walking Unit.		
		Value	Semantics		
		0	Disabled. Default.		
	_	1	Enabled.		
	Bits	Field			
	07		Read as zero.		
	06:04		on Blend Control.		
		Value	Semantics		
		0	Zero		
		1	One		
		2	Source, Color		
		3	Invert Source, Color		
		4	Source, Alpha		
		5	Invert Source, Alpha		
		6 Destination, Alpha			
		7	Invert Destination, Alpha		
	Bits	Field			
	03		Read as zero.		
	02:00		end Control.		
		Value	Semantics		
		0	Zero		
		1	One		
		2	Destination, Color		
		3	Invert Destination, Color		
		4	Source, Alpha		
		5	Invert Source, Alpha		
		6	Destination, Alpha		
		7	Invert Destination, Alpha		

Dither

Offset	Field	Access	Function
+160H	15:00	R/W	Control
	Bits	Field	
	15:09	Reserved.	
	08	Dither.	
		Value	Semantics
		0	Disabled. Default.
		1	Enabled.
	Bits	Field	
	07:00	Reserved.	Read as zero.

Logical Op

Offset	Field	Access	Function	
+164H	15:00	R/W	Logical Operation	on
-	Bits	Field		
	15:09	Reserved.		
	08	Logical Op		
		Value	Semantics	
		0	Disabled. Defaul	t.
		1	Enabled.	
_	Bits	Field		
	07:04		Read as zero.	
	03:00	Logical Op		
-		Value	Logical Op	Semantics
		0H	Zero.	Zero. Black.
		1H	!(Src OR Dest)	NotMergePen
		2H	Dest AND !Src	MaskNotPen
		3H	!Src	NotCopyPen
		4H	Src AND !Dest	MaskPenNot
		5H	!Dest	Not
		6H	Dest XOR Src	XORPen
		7H	!(Dest AND Src)	NotMaskPen
		8H	Dest AND Src	MaskPen
		9H	!(Dest XOR Src)	NotXORPen
		AH	Dest	NOP
		BH	Dest OR !Src	MergeNotPen
		СН	Src	CopyPen
		DH	Src OR !Dest	MergePenNot.
		EH	Src OR Dest	MergePen.
		FH	Ones	White.
			•	

Rendering (Back) Buffer Stride

Offset	Field	Access	Function		
+170H	15:00	R/W	Rendering (Back) Stride		
	Bits	Field			
	15	Back Buffe	er Write Enable.		
		Value	Semantics		
		0	Write Disabled. Default.		
		1	Write Enabled.		
	Bits	Field			
	14:11	Reserved. Read as zero.			
	10:04	Screen stri	de in multiples of 16 pixels.		
	03:00	Reserved.	Read as zero.		

Pixel Format

Offset	Field		Function					
+174H	15:00		Pixel Format shadowed in Edge Walking Unit					
	Bits	Field						
	15:05		Reserved. Read as zero.					
	04:03	Pixel Siz						
		Value	Semantics					
		0	8bpp.					
		1	16bpp.					
		2	24bpp.					
	Bits	3 Field	32bpp.					
	02	Pixel For	mat. Alpha enabled.					
	01:00	Pixel For	mat. Depends on Pixel Size.					
		value	8bpp 16bpp 24bpp 32bpp semantics					
		0	Reserved 4.4.4.4 Reserved Reserved 4b/color.					
		1	Reserved 1.5.5.5 Reserved Reserved 5b/color.					
		2	Reserved 5.6.5 Reserved Reserved 6b/color.					
		3	Reserved Reserved 8.8.8 8.8.8 8b/color.					
	Bits	Field						
	04:00		mat. Encoded format, illegal or unsupported formats indicated.					
		Value	Semantics					
		0-8	Reserved.					
		09H	16bpp, RGB x.5.5.5					
		0AH	16bpp, RGB 5.6.5					
		0CH	16bpp, ARGB 4.4.4.4					
		0DH	16bpp, ARGB 1.5.5.5					
			Reserved.					
		13H	24bpp, RGB 8.8.8 (packed 24b).					
			Reserved.					
		1FH	32bpp, ARGB 8.8.8.8.					

Diagnostic Port Control

Offset	Field	Access	Function
+17EH	15:00	R/W	Diagnostic Port Control
	Bits	Field	
	15:04	Reserved.	Read as zero.
	03:00	Selects dia	gnostic information to be accessed.
-		Value	Semantics
		0	Bypass output of previous unit. Default.
		1-FH	Select diagnostic signals.

4.2.2.7 Memory Interface Unit (+180H)

Back Buffer

Specifies the starting address of the buffer used for the back (rendering) buffer.

Offset	Field	Access	Function	
+180H	31:00	R/W	Back (Rendering) Buffer Base	
	Bits	Field		
	31:24	Reserved.		
	23:12	Base Address, in units of 4KB (2×page size).		
	11:00	Must be zero, each buffer must be aligned to a natural 4KB boundary.		

Z Buffer

Specifies the starting address of the buffer used for the Z-buffer.

Offset	Field	Access	Function	
+188H	31:00	R/W	Z Buffer Base	
Bits Field				
	31:24	Reserved.		
	23:12	Base Address, in units of 4KB (2×page size).		
	11:00	Must be zero, each buffer must be aligned to a natural 4KB boundary.		

Command/Parameter FIFO

Offset	Field	Access	Function	
+198H	31:00	R/W	Command/Parameter FIFO Base	
	Bits Field			
	31:24	Reserved.		
	23:14	Base Address, in units of 16KB.		
	13:00	Must be zero, each buffer must be aligned to a natural 16KB boundary.		

Memory/Bank Relocation

There are 8 one-byte registers that allow remapping of the first 16MB of the local address space on 2.0MB increments. Since there are 8 registers, a maximum of 16MB of memory may be assigned. This can be extended in the future. The SM3110 has 4MB of internal DRAM.

Offset	Field	Access	Function
+1A0H	07:00	R/W	Memory Relocation. 0xxxxxH-ExxxxxH, in 2MB increments
	Bits	Field	
	07:06	Reserved.	
	05:04	Chip/Array	Select
		Value	Semantics
		0	CS[0]. for Internal DRAM.
		1-3	Reserved for External SDRAM.
	Bits	Field	
	03:02	Reserved.	
	01	Address bit	[21] or block/bank selects.
	00	Reserved.	

Offset	Field	Access	Function
+1A1H	07:00	R/W	Memory Relocation. 0xxxxxH-ExxxxxH, in 2MB increments
	Bits	Field	
	07:06	Reserved.	
	05:04	Chip/Array	/ Select
		Value	Semantics
		0	CS[0]. for Internal DRAM.
		1-3	Reserved for External SDRAM.
	Bits	Field	
	03:02	Reserved.	
,	01	Address bi	t [21] or block/bank selects.
	00	Reserved.	
	03:02 01	<i>Reserved</i> . Address bi	1 *

Offset	Field	Access	Function
+1A2H	07:00	R/W	Reserved
+1A7H			

Memory Access Control

Offset	Field	Access	Function
+1B8H	07:00	R/W	Reserved
+1B9H	07:00	R/W	Internal DRAM Control (reserved)
+1BAH	15:00	R/W	Internal Memory Array Timing (reserved)
+1BCH	15:00	R/W	Internal Memory Array Timing (reserved)

Diagnostic Port Control

Offset	Field	Access	Function		
+1BEH	15:00	R/W	Diagnostic Port Control		
	Bits	Field			
	15:05	Reserved.	Read as zero.		
	04:00	Selects di	Selects diagnostic information to be accessed.		
		Value	Semantics		
		0	Bypass output of previous unit. Default.		
		1-1FH	Select diagnostic signals.		

4.2.2.8 DMA (+1C0H)

3D Command/Parameter FIFO: Write Ptr, Read Ptr, End/Size

The 3D Command FIFO is located in internal memory. Typically it will be placed at the top of internal memory. The read and write pointers and end/size values are relative to the command FIFO base address specified by the +CxxH registers in the 2D Control section (4.2.1).

Offset	Field	Access Function	
+1C0H	31:00	R/W Write Point	er
	Bits	Tield	
	31:20	Reserved. Write zero	to this bit.
	19:02	ointer. in double wo	rd (32b) units.
	01:00	Reserved. Write zero	to this bit.
Offset	Field	Access Function	
+1C4H	31:00	R/W Read Point	er
	Bits	Tield	
	31:20	Reserved. Write zero	to this bit.
	19:02	ointer. in double wo	rd (32b) units.
	01:00	Reserved. Write zero	to this bit.
Offset	Field	Access Function	
+1C8H	31:00	R/W End/Size	
	Bits	Tield	
	31:20	Reserved. Write zero	to this bit.
	19:14	End relative to base of	C0, offset by FIFO base in memory interface unit. Size in number
		of 16KB increments.	
	13:00	Reserved. Write zero	to this bit.

3D DMA Transfer Data

Field	Access	Function				
61:00	R/W	Transfer Length and Flags				
Bits	Field					
31:28	Reserved.					
27:24	Source Flags.					
23:20						
	Value	Semantics				
	0H	Non-aligned Interval.				
	1H	Aligned to natural 16B boundary.				
	2H	State Registers except for Palette. Destination only.				
	3H	Palette. Used to load palette RAM, 18b per clock. Destination only.				
	4H	AGP/PCI Linear.				
	5H	Reserved.				
	6H	32b Fill Register. Source only. Used to fill memory				
	7H	Internal. Translate (texture) addresses. Destination only.				
	8-FH	Reserved.				
Bits	Field					
19	Transfer I	Request. This bit is automatically reset by hardware upon completion of a				
	transfer					
	Value	Semantics				
	0	No Request Outstanding.				
	1	Request Outstanding.				
Bits	Field					
8:00		inus one in doublewords.				
Field	Access	Function				
		Source (Read) Pointer				
		Destination (Write) Pointer				
		Bits [01:00] must be zero, the pointers are always in double word (32b) units.				
		Function				
		Source Data				
	Field					
31:00	Fill Data,	primarily used for initializing the Z buffer. It can also be used to fill any				
		memory array. 16b Z-value should be replicated in both upper and lower				
		J J J J J J J J J J J J J J J J J J J				
	1:00 Bits 1:28 7:24 3:20 Bits Bits 19 Bits 8:00 Field 1:00 Bits 1:00 Bits 1:00 Bits 1:00 Bits 1:00 Bits 1:00 Bits	1:00 $\mathbf{R/W}$ BitsField1:28Reserved.7:24Source Flat3:20Destination3:20Destination $Value$ 0H1H2H3H4H5H6H7H8-FHBitsField19Transfer I transferValue011BitsField8:00Length mFieldAccess1:00 $\mathbf{R/W}$ BitsField1:00 $\mathbf{R/W}$ BitsField1:00 $\mathbf{R/W}$ BitsField1:00 $\mathbf{R/W}$				

Register Summary

When the palette is the destination, bits [09:02] of the destination address specify the palette index. Bits [01:00] specify the bytes within the palette and should be set to 0; byte 0 is Blue, byte 1 is Green and byte 2 is Red (byte 3 is not used). The source (internal or AGP/PCI) and destination palette addresses must be doubleword aligned. The matrix of source and destination address spaces is shown in the table below. The palette RAM cannot be the destination addressed through the State Register space, it must be accessed only through its own dedicated space. Remember, the transfer rate is 32b/cycle when non-aligned but *128b/cycle* when aligned.

		Source		
Destination	0-Internal, Non-aligned	1-Internal Aligned	4-External AGP/PCI	6-Fill Register
0 - Internal Non-aligned	Yes	No	Yes	Yes
1 - Internal Aligned	No	Yes	No	Yes
2 - State Registers	Yes	No	No	No
3 - Palette RAM	Yes	No	No	No
4 - AGP/PCI	No	No	No	No
7 - Internal Texture	Yes	No	Yes	No

Table 4-6.	DMA	Transfer	Source/E	Destination	Matrix
------------	-----	----------	----------	-------------	--------

Texture Load

These fields specify the parameters needed to perform the address translation required to load textures into texture memory. The texture map size register specifies the $(log_2(size))$ dimensions of the largest texture and is loaded once per texture map. The translation parameters are loaded for each mipmap level of detail.

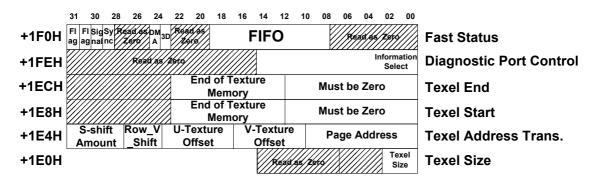


Figure 4-22. Texture Map Size Register

Texture Format

Offset	Field	Access	Function
+1E0H	15:00	R/W	Texel Size used during Texture loads.
	Bits	Field	
	15:08	Reserved.	Read as zero.
	07:03	Reserved.	
	02:00	Texel Size	<u>.</u>
		Value	Semantics
		0	1b - CLUT 1 (2 color palette)
		1	2b - CLUT 2 (4 color palette)
	2 4b - CLUT 4 (16 color palette)		4b - CLUT 4 (16 color palette)
		3	8b - CLUT 8 (256 color palette)
	4 16b – RGB x.5.5.5 and 5.6.5.		16b – RGB x.5.5.5 and 5.6.5.
		5-7	Reserved.

Texture Address Translation Parameters

Offset	Field	Access	Function				
+1E4H	31:00	R/W	Texture Address Translation Parameters				
	Bits	Field					
	31:28	S - Shift Amount. S = max $(0, \log_2 u - \text{lodint} - \text{bsxe})$					
	27:25	Row_V_S	Row_V_Shift.				
	24:18	U - Texture Offset from Page Address (bits [06:00]).					
	17:11	V - Texture Offset from Page Address (bits [06:00]).					
	10:00	Page Addr	Page Address relative to Texel Base Page Register.				

Texture Base/End

Offset	Field	Access	Function		
+1E8H	31:00	R/W	Texture Base Indicates where to start performing texture address transla-		
			tion during loads.		
+1ECH	31:00	R/W	Texture End Indicates where to stop performing texture address translation		
			during loads.		
	Bits	Field			
	31:23	Reserved.	Reserved.		
	22:12	Address a	Address after end of Texture Memory, in units of 4KB (2×page size). <i>Default</i> to 0.		
	11:00	Must be z	ero, each buffer must be aligned to a natural 4KB boundary.		

Fast Status

Multiple bits and values are combined into one register for quick reading.

Offset	Field	Access Function				
+1F0H	31:00	R/O Fast Status				
_	Bits	Field				
	31	Driver Flag @ Register 026H bit [00].				
	30	Driver Flag @ Register 024H bit [00].				
	29	2D Signal @ Register 022H bit [00].				
	28	2D Synchronization @ Register 020H bit [00].				
	27-26	Reserved. Read as zero.				
	25	DMA Busy				
	24	3D Engine Busy				
	23:20	Reserved. Read as zero.				
	19:08	FIFO Status. Indicates how full the FIFO is in units of 256 bytes.				
	07:00	Reserved. Read as zero.				

Diagnostic Port Control

Offset	Field	Access	Function		
+1FEH	15:00	R/W	Diagnostic Port Control		
	Bits	Field			
	15:08	15:08 <i>Reserved</i> . Read as zero.			
	07:04	Reserved.	Reserved.		
	03:00	Selects dia	Selects diagnostic information to be accessed.		
		Value	Semantics		
		0	Bypass output of previous unit. Default.		
		1-FH	Select diagnostic signals.		

4.2.2.9 Motion Compensation (+300H)

These fields specify the parameters needed to perform MPEG motion compensation and format conversion of displayable MPEG frames from 4:2:0 planar format to 4:2:2 interleaved format.

Motion Compensation Processing Registers

Offset	Field	Access	Function		
+340H	31:00	R/W	Slot 0 Base Address		
+360H	31:00	R/W	Slot 1 Base Address		
+380H	31:00	R/W	Slot 2 Base Address		
+3A0H	31:00	R/W	Slot 3 Base Address		
	Bits	Field			
	31:24	Reserved.			
	23:00	Slot Base	Address: byte address identifying the location of slot in memory. Located on		
		a dword b	oundary (at minimum), so 2 lsb must be 0 .		
Offset	Field	Access	Function		
+344H	31:00	R/W	Slot 0 Plane 1/ Plane 3 Offset		
+364H	31:00	R/W	Slot 1 Plane 1/ Plane 3 Offset		
+384H	31:00	R/W	Slot 2 Plane 1/ Plane 3 Offset		
+3A4H	31:00	R/W	Slot 3 Plane 1/ Plane 3 Offset		
	Bits	Field			
	31:25	Reserved.			
	24	Plane 1/ P	lane 3 Identifier		
		Value	Semantics		
		0	Offset for Plane 1. Default.		
		1	Offset for Plane 3.		
	Bits	Field			
	23:19	Reserved.			
	18:00		irst plane) or Plane 3 (interleaved chroma plane) offset from the start of the		
	10.00	`	tes. 6 lsb must be 0.		
Offset	Field	Access	Function		
+348H	31:00	R/W	Slot 0 Plane 2 Offset		
+368H	31:00	R/W	Slot 1 Plane 2 Offset		
+388H	31:00	R/W	Slot 2 Plane 2 Offset		
+3A8H	31:00	R/W	Slot 3 Plane 2 Offset		
	Bits	Field	·		
	31:19	Reserved.			
	18:00	Plane 2 (s	second chroma plane) offset from the start of the slot, in bytes. 6 lsb must be alid for interleaved chroma.		
Offset	Field	Access	Function		
+34CH	31:00	R/W	Slot Scanlines		
	Bits	Field			
	31:12	Reserved.			
	11:00	Number o	f scanlines in the luma plane (11:01 = number of scanlines divided by two).		
•					

Slot Stride

Offset	Field	Access	Function
+36CH	31:00	R/W	Slot Stride
	Bits	Field	
	31:10	Reserved.	
	09:00	Luma (pla	nne 0) stride, in bytes. 4 lsb must be 0.
	(09:01)	Chroma (J	planes 1 and 2) stride, in bytes. (= luma stride/2) 3 lsb are guaranteed to be 0
	(09:00)	Chroma (J	plane 3) stride, in bytes. (= luma stride) 3 lsb must be 0

Motion Comp Busy

Offset	Field	Access	Function		
+350H	7:00	R/O	MC Busy		
	Bits	Field			
	7:02	Reserved	1.		
	01	Motion 0	Compensation Busy Flag. Set by hardware.		
		Value	Semantics		
		0	Motion Compensation Idle.		
		1	Motion Compensation in Progress.		
	Bits	Field			
	00	Format C	Conversion Busy Flag. Set by hardware		
		Value Semantics			
		0	Format Conversion Idle.		
		1	Format Conversion in Progress.		

4.2.2.10 Stipple Mask Array (+400H)

Offset	Field	Access	Function		
+400H	31:00	R/W	Stipple Mask. 32×32 bit.		
+47CH			Occupies the first 32 doublewords of the address space.		
	Bits	Field			
	31:00	Stipple M	lask		

4.2.2.11 Texture Map LOD Table Array (+580H)

Eleven(11) entries. 28 of the 32 bits per entry are defined as described in the Texture Mapping Unit section.

The LOD Table is an 11× 32 bit array containing the parameters used to translate the U, V texture address to linear memory address.

Offset	Field	Access	Function			
+580H	31:00	R/W	LOD Table Entry			
-5A8H						
	Bits Field					
	31:28	Reserved.				
,	27:25	$Row_V_Shift. = max_0_Upge_M_L - pbye + 6$				
,	24:18	U - Texture Offset from Page Address (bits [06:00]).				
,	17:11	V - Texture Offset from Page Address (bits [06:00]).				
	10:00	Page Add	ress relative to Texel Base Page Register.			

Note: The least significant 28 bits are identical in format to the Texture Load Register in the host interface unit. Equations are: $log_2 u = ceiling(log_2(u))$.

4.2.2.12 Temporary Array for Triangle Setup Unit (+5C0H)

Sixteen(16) entries. These registers are provided for debugging purposes. It is a requirement that the 3D engine be idle when these registers are accessed. If the 3D Engine is not idle, corruption of internal data may result, and the read data is not a reliable indication of their contents.

Offset	Field	Access	Function		
+5C0H	31:00	R/O	Triangle Setup Unit Temp Registers		
+5FCH					
. <u> </u>	Bits	Field			
	31:24	Reserved.	Read as zero.		
	23:00	Temporar	Semporary Data		

Vertex List Array (+600H)

128 entries. These registers are provided for debugging purposes. It is imperative that the 3D Engine be idle when these registers are accessed. If the 3D Engine is not idle, corruption of internal data may result, and the read data is not a reliable indication of their contents.

Offset	Field	Access	Function
+600H	31:00	R/O	Vertex List
+7FCH			
	Bits	Field	
	31:24	Reserved.	Read as zero.
	23:00	Vertex Da	ta

Edge List Array (+800H)

256 entries. These registers are provided for debugging purposes. It is a requirement that the 3D Engine be idle when these registers are accessed. If the 3D Engine is not idle, corruption of internal data may result, and the read data is not a reliable indication of their contents.

Field	Access	Function
31:00	R/O	Edge List
Bits	Field	
31:24	Reserved.	Read as zero.
23:00	Edge List	Data
	31:00 Bits 31:24	31:00 R/O Bits Field 31:24 Reserved.

Texture Palette Array (+C00H)

256 entries.

Offset	Field	Access	Function
+C00H	31:00	R/W	Texture Palette
+FFCH			
	Bits	Field	
	31:24	Reserved.	Read as zero.
	23:18	Red Palett	e Data
	17:16	Reserved.	Read as zero.
	15:10	Green Pal	ette Data
	09:08	Reserved.	Read as zero.
	07:02	Blue Palet	te Data
	01:00	Reserved.	Read as zero.

4.2.3 3D Command/Parameter FIFO (1FF4000H)

This area is for the 3D command/parameter FIFO. No user access is required.

4.2.4 2D Command/Parameter FIFO (1FF8000H)

This area is for the 2D command/parameter FIFO. No user access is required.

4.2.5 2D Image Data FIFO (1FFC000H)

This area is for the 2D image data FIFO. No user access is required.

4.3 Standard VGA Registers

The standard VGA registers are I/O mapped for compatibility and accessed through pairs of index and data registers. They are also memory-mapped (unindexed) into a 256B address space for accessibility by processors without an I/O address space or direct access by *x*86 processors operating in protected mode. Standard VGA Control Registers with a 10-bit index register I/O are abbreviated **CR***xx* (standard VGA compatible) or **ER***xx* (enhanced).

The newer enhanced VGA registers are defined as offsets to the Graphics Controller Register (GRC). These new registers include:

SM3110 Enhanced register access control VESA bank offset control Scratch registers

4.3.1 Register Locations

There are six sets of registers (grouped functionally) in the standard ISA (10-bit) I/O address space defined by the VGA specification. These are either individual registers or index/data register pairs to access the VGA control and configuration registers. All memory-mapped accesses have an address prefix (bits [31:16]) of *aa*FFH.

Registers Group	VGA	MDA Emulation	CGA Emulation	Comments
General	3C2,3C3,3CA,3CC	3BA	3DA	
CRTC		3B4/3B5	3D4/3D5	
Sequencer	3C4/3C5			Index/data
Graphics Controller	3CE/3CF			Index/data
DAC	3C6-3C9			Index/data
Attribute	3C0/3C1			Index/data

In the VGA address space, most registers employ an index/data scheme to reduce the number of I/O addresses required.

	07 00	007 00	
+C2H	Video Enable	Rd: Input Status Wr: Misc Output	General Control
+CAH		Feature Control	General Control
+CCH		Rd: Misc Output	General Control
+BA/DAH		Rd: Input Status Wr: Feat Control	General Control (MDA/CGA)
+B4/D4H	Data	Index	CRTC (MDA/CGA), indexed
+C4H	Data	Index	Sequencer, indexed
+CEH	Data	Index	Graphics Controller, indexed
+C6H	Read Index/Status	Mask	DAC
+C8H	Data	Write Index	
+C0H	Data	Write Index	Attributes
	+1	+0	

Figure 4-23. VGA Control Registers

4.3.2 General Registers

The following section describes the standard VGA control registers arranged by index value. A register at I/O address *aaaa*, index *xx* is designated *aaaa***CR***xx*.

Register	Field	Access	Function		
3C3H	07:00	R/W	Video Subsystem Enable		
	Bits	Field			
	07:01	Reserved			
	00	Access E	Access Enable		
		Value Se	Value Semantics		
		0 D	0 Disables VGA subsystem (sleep mde).		
		1 E1	nables VGA subsystem (wake mode).		
Register	Field	Access	Function		
3C2H	07:00	W/O	Miscellaneous Output		
3CCH	07:00	R/O	Miscellaneous Output		
	Bits	Field			
	07		ync Polarity		
	06		al Sync Polarity		
		Value Se			
		0 Pc	ositive.		
		1 N	egative.		
	Bits	Field			
	07:06	Vertical S	ize. Bits 7 and 6 are determined by the vertical size in VGA modes		
		Value Semantics			
		0 Re	eserved.		
		1 400 Lines.			
		2 350 Lines.			
		3 480 Lines.			
	Bits	Field			
	05	Odd/Even	n Page Bit. Selects between two 64KB pages of local memory in Odd/Even		
		modes.			
		Value Se	nantics		
		0 Ev	ven Page.		
		1 0	ld Page.		
	Bits	Field			
	04	Reserved. Read as zero.			
	03:02	Clock Select			
		Value Semantics			
		0 64	0 horizontal pixels. (Color 25.175MHz dot clock).		
			0 horizontal pixels. (Mono 28.322MHz dot clock).		
			eserved.		
			ot clock selected in mode control register (CR42), bits [3:0].		
		L1 =			

Bits	Field						
01	Enable	Enable Memory Access to 000A0000-000BFFFFH.					
	Value	Semantics					
	0	Disables host memory access.					
	1 Enables host memory access.						
Bits	Field						
00	I/O Address Select.						
	Value Semantics						
	0 MDA emulation. CRTC at 3B4/3B5H, Input Status 1 at 3BAH						
	1	CGA emulation. CRTC at 3D4/3D5H, Input Status 1 at 3DAH					

Register	Field	Access	Function
3C2H	07:00	R/O	Input Status 0
	Bits	Field	
	07		etrace Interrupt
		Value	Semantics
		0	Interrupt not pending or cleared.
		1	Interrupt pending.
	Bits	Field	
	06:05	Reserved.	
	04	Monitor S	ense Input Status
	-	Value	Semantics
		0	Sense input is 0.
		1	Sense input is 1.
	03:00	Reserved.	
Register	Field	Access	Function
3BAH	07:00	R/O	Input Status 1 (mono emulation)
3DAH	07:00	R/O	Input Status 1 (color emulation)
	Bits	Field	
	07:04		Read as zero
	03	Vertical R	
		Value	Semantics
		0	Vertical display enabled.
		1	Vertical Retrace Interval.
	Bits	Field	
	02:01	Reserved.	Read as zero.
	00	Display E	nable Status (inverted/active low)
		Value	Semantics
		0	Display Enabled.
		1	Vertical or Horizontal Retrace Interval.
Register	Field	Access	Function
3BAH	07:00	W/O	Feature Control (mono emulation). Must be zero.
3DAH	07:00	W/O	Feature Control (color emulation). Must be zero.
3CAH	07:00	R/O	Feature Control. Read as zero.

4.3.3 CRT Controller (CRTC)

The horizontal and vertical timing of the CRT is specified by several standard VGA and extended control registers located at I/O address 3B4H (MDA emulation) or 3D4H (CGA emulation). Selection of B or D as address bits [07:04] is determined by bit [0] of the Miscellaneous Output register at 3C2H.

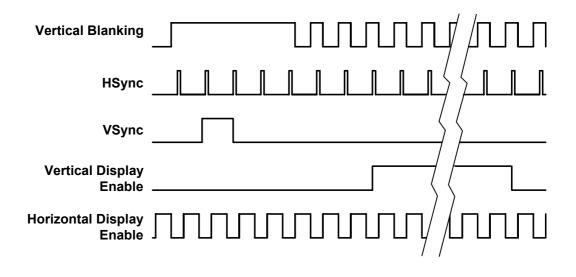


Figure 4-24. VGA CRTC Timing

4.3.3.1 VGA CRTC Resolution Limitations

The VGA compatible CRTC definition allows a maximum resolution of 256 characters (2048 pixels with 8 pixels/character) by 1024 scan lines. This is the maximum display resolution including blanking intervals.

4.3.3.2 CRTC Index/Data Registers

The CRTC index register is at 03B4 (MDA emulation) or 03D4H (CGA emulation) and the data port is at 3B5 or 03D5H.

Register	Field	Access	Function
3B4/3D4H	07:00	R/W	Index
	Bits	Field	·
	07:05	Reserved	. Must be zero.
	04:00	CRTC Re	egister Index
Register	Field	Access	Function
3B5/3D5H	07:00	R/W	Data
Index	Field	Access	Function
00H	07:00	R/W	Horizontal Total
01H	07:00	R/W	Horizontal Display End
02H	07:00	R/W	Horizontal Blank Start
03H	07:00	R/W	Horizontal Blank End
04H	07:00	R/W	Horizontal Sync Start
05H	07:00	R/W	Horizontal Sync End
06H	07:00	R/W	Vertical Total
07H	07:00	R/W	CRTC Overflow
08H	07:00	R/W	Preset Row Scan
09H	07:00	R/W	Maximum Scan Line
Index	Field	Access	Function
0AH	07:00	R/W	Cursor Start Scan Line

0AH	07:00	R/W Cursor Start Scan Line				
	Bits	Field				
	07:06	Reserved. Read as zero.				
	05	Text Cursor Enable				
		Value Semantics				
		0 Disables the text cursor.				
		1 Enables the text cursor.				
	Bits	Field				
	04:00	Cursor Start Scan Line				
		Value Semantics				
		<i>n</i> Scan line within a character row on which the cursor starts. If greater than the				
		cursor end line (CR0B) then no cursor is displayed.				
Index	Field	Access Function				
таех	Field	Access Function				
0BH	07:00	R/W Cursor End Scan Line				
	07:00	R/W Cursor End Scan Line				
	07:00 Bits	R/W Cursor End Scan Line Field				
	07:00 <i>Bits</i> 07	R/W Cursor End Scan Line Field Reserved. Read as zero.				
	07:00 <i>Bits</i> 07	R/W Cursor End Scan Line Field Reserved. Read as zero. Cursor Skew Cursor Skew				
	07:00 <i>Bits</i> 07	R/W Cursor End Scan Line Field Reserved. Read as zero. Cursor Skew Value Semantics				
	07:00 Bits 07 06:05	R/W Cursor End Scan Line Field Reserved. Read as zero. Cursor Skew Value Semantics n Specifies the delay in character positions of the cursor (to the right).				
	07:00 Bits 07 06:05 Bits	R/W Cursor End Scan Line Field Reserved. Read as zero. Cursor Skew Value Semantics n Specifies the delay in character positions of the cursor (to the right). Field Field				
	07:00 Bits 07 06:05 Bits	R/W Cursor End Scan Line Field Reserved. Read as zero. Cursor Skew Value Semantics n Specifies the delay in character positions of the cursor (to the right). Field Field Cursor End Scan Line Cursor End Scan Line				

Index	Field	Access	Function	
0CH	07:00	R/W	Start Address (upper), Default is undefined.	
0DH	07:00	R/W	Start Address (lower), Default is undefined.	
0EH	07:00	R/W	Cursor Location (upper), <i>Default</i> is undefined.	
0FH	07:00	R/W	Cursor Location (lower), <i>Default</i> is undefined.	
10H	07:00	R/W	Vertical Sync Start	
11H	07:00	R/W	Vertical Sync End	
	Bits	Field		
	07		rites to CR00-07H. Set to 1 by the BIOS during a mode set, reset or power on.	
		Value Se	mantics	
		0 E1	nable writes to all CRTC registers. Default.	
		1 D	isable writes to CRTC registers CR00-07H, except CR07[4].	
	Bits	Field		
	06	Memory	/ Refresh Select	
		Cleared	to 0 by the BIOS during a mode set, reset or power on.	
		Value Se	mantics	
		0 T1	nree memory refresh cycles per horizontal scan line. Default.	
		1 Fi	ve memory refresh cycles per horizontal scan line.	
	Bits	Field		
	05	Vertical	Interrupt Disable	
		Cleared	to 0 by the BIOS during a mode set, reset or power on.	
		Value Se		
		0 Ve	ertical Interrupt enabled. Default.	
		1 Ve	ertical Interrupt disabled.	
	Bits	Field		
	04	Clear Ve	ertical Interrupt	
		Cleared	to 0 by the BIOS during a mode set, reset or power on.	
		Value Semantics		
	0 Vertical Interrupt cleared. <i>Default</i> .			
		1 Vertical Interrupt enabled. Other bits in this register should not be changed		
		while writing to this bit. This allows the interrupt flip-flop to be set at the start		
		of a vertical sync pulse.		
	Bits	Field	······································	
	03:00	Vertical	Sync End	

Index	Field	Access	Function		
12H	07:00	R/W	Vertical Display End		
13H	07:00	R/W	Screen Offset (Pitch), Default is undefined.		
			Specifies the difference between the starting byte address of two consecu-		
			tive scan lines. The value is multiplied by 2 (byte), 4 (word) or 8 (double-		
			word mode) specified by bit 6 of CR14 and bit 3 of CR17.		
	Bits	Field			
	07:00	Logical S	Screen Width, maximum of 512 (byte), 1024 (word) or 2048 (doubleword		
		mode) by			
Index 14H	<i>Field</i> 07:00	Access R/W	Function Underline Location		
14П	Bits	R/W Field			
	07		Read as zero.		
	06				
	00		Doubleword Mode Value Semantics		
			yte or Word Memory Addressing. <i>Default</i> .		
			oubleword Memory Addressing.		
	Bits	Field	oubleword Memory Addressing.		
	05	Count by	4 Mada		
	05	5	4 Mode mantics		
			he memory address counter operation depends on CR17, bit 3(count by 2).		
			efault.		
		1 M	lemory Address Counter is incremented every four character clocks.		
	Bits	Field	enfory Address Counter is incremented every four character clocks.		
	04:00	Underline Location within a character row.			
	07.00		mantics		
		<i>n</i> -1 T	he scan line -1 (counted from the top) on which the underline is displayed.		
			efault.		
		D	εյишι.		

Index	Field	Access	Function
15H	07:00	R/W	Vertical Blank Start
16H	07:00	R/W	Vertical Blank End
17H	07:00	R/W	CRTC Mode Control
	Bits	Field	
	07	Hardwar	e Reset
		Value Se	emantics
		0 V	ertical and Horizontal Sync pulses disabled. Default.
		1 V	ertical and Horizontal Sync pulses enabled.
	Bits	Field	
	06	Byte Mo	
		Value Se	emantics
		0 W	/ord Mode. Default.
		Т	he memory address counter bits are shifted up (towards the MSB) one bit
		p	osition.
		1 B	yte Address Mode.
	Bits	Field	·
	05:04	Reservea	l. Default is 0.
		Value Se	emantics
		0 D	isabled. Default.
			nabled.
	Bits	Field	
	02	Vertical	Total Double Mode. Specifies the source of the clock/enable for the vertical
		timing co	bunter.
		Value Se	emantics
		0 H	orizontal Sync. Default.
			orizontal Sync -2. Double vertical resolution.
	Bits	Field	~
	01:00	Reserved	l. Default is 0.

Index	Field	Access	Function		
18H	07:00	R/W	Line Compare		
22H	07:00	R/O	CPU Data Latch		
26H	07:00	R/W	Attribute		
2FH	07:00	R/W	CRTC Test Functions		
	Bits	Field			
	07	Enable Te	est Clock to upper 5 bits of Vertical Counter.		
	06	Enable To	est Clock to upper 4 bits of Vertical Counter.		
	05	Enable Te	est Clock to upper 5 bits of Horizontal Counter.		
	04	Enable Te	Enable Test Clock to upper 5 bits of Horizontal Counter.		
		Semantics	Semantics		
		Any I/O	Any I/O Read will cause the enabled section of the vertical or horizontal counter to be		
		clocked.	clocked.		
	Bits	Field	Field		
	03:01	Reserved	Reserved.		
	00	Force Sys	Force Sync Polarity HIGH		
		Value Se			
		0 N	ormal Sync Polarity (obey Misc. Output Register settings). Default.		
		1 Fc	orce Sync Polarity HIGH (override of Misc. Output Register settings).		

4.3.4 Sequencer

Index/Data Port

Register	Field	Access	Function
3C4H	07:00	R/W	SEQ Index, <i>Default</i> is undefined.
	Bits	Field	
	07:04	Reserved	. Read as zero.
	03:00	Sequencer Index	
register	field	access	function
3C5H	07:00	R/W	SEQ Data, Default is undefined.

Reset

 Index	Field	Access	Function	
0H	07:00	R/W	Reset. These bits have no effect on sequencer or VGA operation.	
	Bits	Field		
07:02 <i>Reserved</i> . Must be zero.			<i>d</i> . Must be zero.	
	01	Synchro	nous Reset	
	00	Asynchronous Reset		
Value Semantics			emantics	
0 Reset asserted.				
1 Reset not asserted.				

Clocking Mode

Index	Field	Access Function
1H	07:00	R/W Clocking Mode
	Bits	Field
	07:06	<i>Reserved</i> . Must be zero.
	05	Screen Off.
	04	Shift 4.
	03	Dot Clock
	02	Shift Load
	01	<i>Reserved</i> . Must be zero.
	00	8/9 Pixel Characters
		Value Semantics
		0 9 Pixel Characters. For text modes only.
		1 8 Pixel Characters. For text or graphics modes.

Map Mark

Index	Field	Access Function
2H	07:00	R/W Map Mask. All maps should be enabled in Chain 4 or Chain 8 modes.
	Bits	Field
	07:04	Reserved. Must be zero.
	03	Map Mask. Plane 3 (byte 3 of a doubleword access).
	02	Map Mask. Plane 2 (byte 2 of a doubleword access).
	01	Map Mask. Plane 1 (byte 1 of a doubleword access).
	00	Map Mask. Plane 0 (byte 0 of a doubleword access).
		Value Semantics
		0 Disables host access to the corresponding map.
		1 Enables host access to the corresponding map.

Character Map Select

Index	Field	Access	Function		
3Н	07:00	R/W	Character Map Select		
	Bits	Field			
	07:06	Reserved	. Must be zero.		
	05	Characte	r Map Select High Bit A.		
	04	Characte	r Map Select High Bit B.		
	03:02	Characte	Character Map Select A.		
	01:00	Characte	r Map Select B.		
		Value Se	emantics		
		0 D	isables host access to the corresponding map.		
		1 E	nables host access to the corresponding map.		

Memory Mode

Index	Field	Access	Function
4 H	07:00	R/W	Memory Mode
	Bits	Field	
	07:04	Reserved.	Must be zero.
	03	Chain 4.	
		Value Ser	nantics
		0 Da	ata is sequentially accessed within the bit map according to the Map Mask
			gister.
		1 Ac	ddress $[01:00]$ select the map used, $A[01:00] = 0$ selects map 0, $A[01:00]$
		se	lects map 3.
	Bits	Field	
	02	Odd/Ever	1
		Value Ser	nantics
		0 00	dd/Even plane addressing. Accesses to even addresses are to planes 0 and 2,
		od	d addresses are to planes 1 and 3.
		1 Da	ata is sequentially accessed within the bit map according to the Map Mask
			gister.
	Bits	Field	
	01		Memory.
		Value Ser	nantics
			nly 64KB of memory is available.
			ore than 64KB of memory is available.
	Bits	Field	
	00	Reserved.	Must be zero.

Reset VGA

Index	Field	Access	Register
07H	07:00	W/O	VGA Reset
	Bits	Field	
	07:00	Reset VG	A backend (attribute and CRT controllers).

4.3.5 Graphics Controller

Index/Data Port

Register	Field	Access	Function
3CEH	07:00	R/W	GRC Index Default is undefined.
	Bits	Field	
	07:04	Reserved	Read as zero.
	03:00	Graphics	Controller Index
Register	Field	Access	Function
3CFH	07:00	R/W	GRC Data, <i>Default</i> is undefined.

Set/Reset Data

Index	Field	Access	Function
00H	07:00	R/W	Set/Reset Data Contains the color data written to each byte of the mem-
			ory plane during a host write in write modes 0 and 3.
	Bits	Field	
	07:04	Reserved	. Read as zero.
	03:00	Set Reset	t Data

Enable Set/Reset Data

Index	Field	Access	Function
01H	07:00	R/W	Enable Set/Reset Data
	Bits	Field	
	07:04	Reserved.	Read as zero.
	03:00	Enable Se	t Reset Data

Color Compare

Index	Field	Access	Function
02H	07:00	R/W	Color Compare <i>Default</i> is undefined. In read mode 1, the data at the address
			specified by the host is XNORed with the color compare register contents and
			the result placed in the color compare register. A '1' indicates a match in the
			corresponding bit position.
	Bits	Field	
	07:04	Reserved	<i>l</i> . Read as zero.
	03:00	Color Co	ompare Data
		Value Se	emantics
		0 W	Vrite: data to be compared.
		R	ead: No match.
		1 W	/rite: data to be compared.
		R	ead: Match

Raster Op/Rotate Count

Index	Field	Access	Function
03H	07:00	R/W	Raster Operation/Rotate Count Default is undefined.
	Bits	Field	
	07:05	Reserved	. Read as zero.
	04:03	Raster Ol)
		Value Sei	mantics
		0 No	o operation.
		1 Lo	ogical AND with data in processor latches.
		2 Lo	ogical OR with data in processor latches.
		3 Lo	ogical XOR with data in processor latches.
	Bits	Field	
	02:00	Rotate Co	bunt.
		Value Sei	mantics
		0 N	o rotation.
		1-7 N	umber of positions to right rotate.

Read Plane Select

Index	Field	Acces.	s Function				
04H	07:00	R/W	Read Plane Select <i>Default</i> is undefined.				
			This specifies the memory plane that will be accessed by host reads in read mode 1. It				
			has no effect on the color compare, read mode 1. In odd/even mode, bit 0 is ignored.				
	Bits	Field					
	07:02	Reser	ved. Read as zero.				
	01:00	Select					
		Valu ,	Semantics				
		е					
		0-3	Plane 0 to 3, respectively.				
		2	Write mode 2. Memory planes 3-0 are written with 8 bits of the host write data bits				
			[3:0], respectively.				
		3	Write mode 3. All four memory planes are written with 8 bits of the color value con-				
			tained in the set/reset register for that plane. The enable set/reset register has no effect.				
			Rotated host write data is ANDed with the bit mask register to generate an 8 bit value				
			that performs the same function as the bit mask register in write modes 0 and 2.				

Graphics Controller Mode

Index	Field	Access Function							
05H		R/W Graphics Controller Mode <i>Default</i> is undefined.							
	Bits	Field							
	07	07 <i>Reserved</i> . Read as zero.							
	06	256 Color Shift Mode							
		Valu Semantics							
		e 0 Disable							
		1 Enable							
	Bits	Field							
	05	Shift Mode							
		Valu Semantics							
		e							
		0 Disable							
	_	1 Enable							
	Bits	Field							
	04	Odd/Even Addressing							
		Valu Semantics							
		e 0 Disable							
		1 Enable							
	Bits	Field							
	03	Read Mode Select							
		Valu Semantics							
		e							
		0 Read mode 0. Read data is accessed by the host selected by the Plane Select register.							
	D	Read mode 1. Color compare using the Color Compare and Color Don't Care registers.							
	Bits	Field							
	02	Reserved. Read as zero.							
	01:00	Write Mode Select Valu Semantics							
		e							
		0 Write mode 0. Direct host access.							
		1 Write mode 1. All four memory planes are written with data from the processor latches.							
		Raster OPs, rotate count, set/reset data/enable and bit mask registers do not affect the							
		write operation.							

Memory Map Mode

Index	Field	Access	Function
06H	07:00	R/W	Memory Map Mode
	Bits	Field	
	07:04	Reserved	. Read as zero.
	03:02	Memory	Map specifies the size and starting address of the VGA aperture that is
		mapped t	o the local memory array starting at the address specified in the VESA bank
		register.	
		Value Se	mantics
		0 00	0A0000-BFFFFH (128KB).
		1 00	0A0000-AFFFFH (64KB).
		2 00	0B0000-B7FFFH (32KB).
		3 00	0B8000-BFFFFH (32KB).
	Bits	Field	
	01	Chain Od	d/Even Planes
		Value Se	mantics
		0 A	ddress bit [00] is unchanged.
		1 H	ost address bit A[00] is replaced by a higher order address bit: A[00] then
		sp	ecifies which plane is selected. $A[00]=0$ selects the even planes (0/2),
		Α	[00]=1 selects the odd planes $(1/3)$.
	Bits	Field	
	00		phics Mode
		Value Se	mantics
		0 Te	ext Mode display addressing.
		1 G	raphics Mode display addressing. The character generator address latches
		ar	e disabled.

Color Don't Care

Index	Field	Access	Function
07H	07:00	R/W	Color Don't Care <i>Default</i> is undefined. In read mode 1 this performs
			comparisons.
	Bits	Field	
	07:04	Reserved.	Read as zero.
	03:00	Color Plan	ne Select
		Value Sen	nantics
		0 Igr	nore the data from the corresponding color plane.
		1 Us	e the data from the corresponding color plane when performing a color
		con	mpare operation.
index	field	access	function
08H	07:00	R/W	Bit Mask

DAC Mask

register	field	access	function
3C6H	07:00	R/W	DAC Mask Default is undefined.

Palette State

Reads and writes to the Palette are performed as a sequence of three byte accesses. An internal 3-state sequencer generates the selection of the appropriate byte of the palette to be accessed. If this sequence is interrupted, and another software process needs to change the palette, the state of the access sequence must be saved along with the palette contents. The sequencer state is accessible in this register.

Register	Field	Access	Function
3C7H	07:00	Write	DAC Read Index Default is undefined.
		Read	DAC Status Default is undefined.
	Bits	Field	
	07:02	Reserved.	Read as zero.
	01:00	Cycle Stat	us
		Value	Semantics
		0	Write Cycle.
		3	Read Cycle.
register	field	access	function
3C8H	07:00	R/W	DAC Write Index Default is undefined.
3C9H	07:00	R/W	Palette Data Default is undefined.

4.3.6 Attribute Controller

Index/Data Port

Register	Field	Access	Function
3C0H	07:00	R/W	ATC Index <i>Default</i> is undefined.
	Bits	Field	· "
	07:06	Reserved	
	05	Palette A	ddress Source
		Value	Semantics
		0	Disable display access to VGA palette registers at index [0FH]. <i>Default</i> .
			This enables host access to the palette registers.
		1	Enable access to VGA palette registers for normal display operation.
			The host cannot access the palette registers.
	Bits	Field	· · · · ·
	04:00	Attribute	Controller Index
Register	Field	Access	Function
3C1H	07:00	R/W	ATC Data Default is undefined.
Index	Field	Access	Function
00-0FH	05:00	R/W	Palette
	Bits	Field	
	07:06	Reserved	. Must be zero.
	05:03	Secondar	y Color, R, G, B, respectively
	02:00 Primary Color, R, G, B, respectively		

Index	Field	Access	Function
10H	07:00	R/W	Attribute Mode Control
	Bits	Field	
	07		5 [5:4] Mode
	06	256 Color	Mode
		Value	Semantics
		0	4b pixels are translated to 6b through the VGA palette. Default.
		1	Two consecutive 4b pixels are assembled into an 8b pixel at half the inter-
			nal DCLK.
	Bits	Field	
	05	PEL Pann	ing Force to Zero
		Value	Semantics
		0	No effect on panning register. Default.
		1	A successful line-compare operation forces the output of the PEL Panning
			register to zero until VSYNC occurs, then returns the output to the pro-
			grammed value.
	Bits	Field	
	04	Reserved.	Read as zero.
	03	Blink	
		Value	Semantics
		0	Use background intensity for text attribute. <i>Default</i> .
		1	Use blink attribute for text mode.
	Bits	Field	·
	02	Line Grap	hics
		Value	Semantics
		0	The 9th pixel of a text character is same as the background. <i>Default</i> .
		1	Special line graphics character codes are enabled. The 9th pixel is the
			same as the 8th if the if the character code is C0-DFH.
	Bits	Field	·
	01	Mono	
		Value	Semantics
		0	Use color display text attributes. <i>Default</i> .
		1	Use mono display text attributes.
	Bits	Field	
	00	Graphics	
		Value	Semantics
		0	Text attribute control mode. <i>Default</i> .
		1	Graphics control mode.

Index	Field	Access	Function
11H	07:00	R/W	Border Color
12H	07:00	R/W	Color Plane Enable
	Bits	Field	
	07:06	Reserved	Read as zero.
	05:04	Video Tes	st. <i>Default</i> is 0.
	03	Display P	Plane 3 Enable. <i>Default</i> is 0.
	02	Display P	Plane 2 Enable. <i>Default</i> is 0.
	01	Display P	lane 1 Enable. <i>Default</i> is 0.
	00	Display P	lane 0 Enable. <i>Default</i> is 0.
		Value	Semantics
		0	Forces the output of the corresponding color plane to '0' before accessing
			the VGA palette. Default.
		1	Enables the output of the corresponding color plane.
index	field	access	function
13H	03:00	R/W	Horizontal Pixel Panning
	Bits	Field	
	07:04		Read as zero.
	03:00	Pan Shift	Amount. <i>Default</i> is 0.
		The number	per of pixels panned depends on the mode.
index	field	access	function
14H	03:00	R/W	Pixel Padding
	Bits	Field	
	07:04	Reserved	Read as zero.
	03:02	Pixel Pad	ding, the two MSBs of the 8b color output for all except 256 color mode.
		Default is	s 0.
	01:00	Pixel Pad	ding, V5/V4. Default is 0.

4.3.7 Enhanced VGA Registers

The small number of enhanced VGA registers are accessed thru the GRC index/data port of 3CE/ 3CFH. These registers are located at offsets +80-8FH of the GRC port (see Section 4.3.5, Graphics Controller).

4.3.7.1 Enhanced Register Access Enable

To prevent inadvertent access to the enhanced I/O mapped registers, a specific sequence must be written through the VGA Graphics Controller index/data port to enable access. Disabling is accomplished by writing a single byte to the same index/data port. Determination of the Locked/ Unlocked state can be made by reading the port. The sequence of unlock writes must not be interrupted by any other accesses to the Graphics Controller index/data port: either the code sequence should be executed with interrupts disabled or the sequence should be performed interruptible and the lock state read to determine if the unlock occurred. If not it should be repeated until the lock state indicates unlocked. Reading the register returns the last value written.

Notes: The unlock sequence is triggered by writing the correct data to the data port only. If intervening accesses to other index/data ports are performed, the unlock state machine is not affected.

The unlock sequence can be performed by writing index(80H)/data("S"), index(80H)/data("M") or
index(80H)/data("S")/data("M").

Index	Field	Access	Function
80H	07:00	R/W	Enhanced Register Access Enable (LOCK).
	Bits	Field	
	07:00	Key	
		Value	Semantics
		53H	ASCII 'S', upper case, first unlock key in sequence.
		4DH	ASCII 'M', upper case, second unlock key in sequence.
		All	Lock. Any value except the correct value in the unlock sequence resets the
		other	state machine.
		4CH	ASCII 'L', upper case to Lock.
Index	Field	Access	Function
81H	07:00	R/O	Enhanced VGA Register Access State.
	Bits	Field	
	07:01	Reserve	<i>d</i> .
	00	Lock St	ate
		Value	Semantics
		0	Unlocked.
		1	Locked.

4.3.7.2 Enhanced Control Access

Access to the enhanced control (register) space from real mode is controlled by one register. When enhanced register access is enabled, local memory cannot be accessed through 000A0000-000BFFFFH. The 64KB control space is mapped from 000A0000-000AFFFFH. The size and base specified for normal VGA accesses in 3CFH, index 06H, bits [3:2] is ignored. *This works only for little-endian access to registers; big-endian access can only be performed directly through the linear aperture*.

Index	Field	Access	Function
82H	07:00	R/W	Control Access Bank.
	Bits	Field	
	07	Memory	/ mapped Enhanced Register access
		Value Se	mantics
		0 D	isabled. <i>Default</i> . Access to this range returns the memory contents.
		1 E1	nabled.
	Bits	Field	
	06:03	Reserve	<i>d.</i>
	02:00	Control	Space Access Bank Offset. This selects the 64K bank within the 512KB con-
		trol space	ce at the top of the first 8MB local address space. The immediate control reg-
		ister spa	ce is at <i>bb</i> FFxxxxH, the offset should be set to 7, for convenience bits[03:00]
		may be	set to FH, i.e, bit[03] is ignored.

4.3.7.3 Bank Offset

In S/VGA modes the amount of memory that is addressable must be increased to support higher resolution displays. A switching of a 64KB bank with a 32KB granularity allows continuous access to the entire physical address space. This 64KB segment is accessed at the standard VGA address space of 000A0000H. The most significant bit allows specification of either VGA-mode access or banked, packed-pixel access to local memory. The latter is useful for VESA graphics modes or packed-pixel access to local memory for debug.

Index	Field	Access	Function				
84H	07:00	R/W	Bank Offset. For accesses to the VGA space. The size and start address				
			are determined by 3CFH, index 06H, bits [3:2].				
	Bits	Field					
	07	VGA Apo	erture Local Memory Access.				
		Value Ser	nantics				
		0 Normal, banked, VGA defined mode. <i>Default</i> .					
		1 Banked, packed pixel access to Local Memory, bypass VGA GRC.					
	Bits	Field					
	06:00	Address (Offset in units of 32KB. <i>Default</i> is 00H. These seven bits are <i>added</i> to host				
		address A[21:15]. The resulting 7 bits are concatenated with A[14:00] of the host					
		address to form a 22b linear address [21:00] allowing access anywhere within the					
		4MB max	ximum local physical memory address space.				

Index	Field	Access	Function		
85H	07:00	R/W	Dual Palette RAM Selection		
	Bits	Field			
	07	Palette Ra	am Selection.		
		Value Semantics			
		0 Se	lect display 0 palette RAM. Default.		
		1 Se	lect display 1 palette RAM.		
	Bits	Field			
	06:02	Reserved			
	01:00	Address of	offsets in units of 4MB. Default is 00B.		

The inputs to the address offset adder are defined below:

Value	Size	Base	Adder A Input	AdderB Input	Comments
00	128KB	000A000H	ER[84][5:0]	000B A[16:15]	
01	64KB	000A000H	ER[84][5:0]	0000B A[15]	
10	32KB	000B0000H	ER[84][5:0]	00000B	No carry will propagate
11	32KB	000B8000H	ER[84][5:0]	00000B	No carry will propagate

4.3.7.4 User-Defined Scratch Registers

There are 8 bytes of user-defined scratch registers provided for BIOS or display driver use. The definitions of these registers are given in Section 5, BIOS Specifications

Index	Field	Access	Function
88-8FH	07:00	R/W	User Defined.

Note: **0x8Eh** must contain the current SM3110 video mode number. If the video mode is changed using BIOS routines, then the BIOS will update the number automatically. If the video mode is changed by programming registers, then this register must be updated by the programmer at that time.

4.3.7.5 CRTC Test

Additional facilities are provided for testing that are enabled only when the VGA enhanced registers are unlocked. This is located in the VGA CRTC I/O space at **3B4/3D4H**.

Index	Field	Access Function					
2FH	07:00	R/W CRTC Test Functions					
	Bits	Tield					
	07	Enable Test Clock to upper 5 bits of Vertical Counter.					
	06	Enable Test Clock to upper 4 bits of Vertical Counter.					
	05	Enable Test Clock to upper 5 bits of Horizontal Counter.					
	04	Enable Test Clock to upper 5 bits of Horizontal Counter.					
		<i>Temantics</i>					
		Any I/O Read will cause the enabled section of the vertical or horizontal counter to be					
		clocked.					
	Bits	Tield					
	03:01	Reserved.					
	00	Force Sync Polarity HIGH					
		'alue Semantics					
		0 Normal Sync Polarity (obey Misc. Output Register settings). <i>Default</i> .					
		1 Force Sync Polarity HIGH (override of Misc. Output Register settings).					

BIOS Specifications

5 **BIOS Specifications**

5.1 Overview

The SM3110 BIOS is fully compatible with standard VGA, VBE/PM version 1.0, DDC Level 2B, and VESA VBE version 2.0. The SM3110 BIOS also supports single or multiple display adapter configurations, as well as simultaneous and dual view configurations. The SM3110 BIOS requirements, scratchpad register usage and a detailed description of the VGA BIOS, VESA BIOS extensions and SM3110 BIOS extensions are also described here.

Software and Hardware Environments

The SM3110 BIOS operates in the standard IBM PC/AT (X-86) software environment. It operates in conjunction with the Microsoft MS-DOS or equivalent operating systems. The SM3110 BIOS is designed to support the MS Windows 95/98 and MS Windows NT operating systems, implementing standard VGA, SVGA, and VBE modes.

The SM3110 BIOS operates in either the PCI or AGP bus environments. The SM3110 BIOS fits into either 32KB or 64KB ROM and is designed to be easily customized to fit customers' needs.

Support Capabilities

The SM3110 supports multiple display adapters, bus environments and video modes.

Multiple Display Adapter Support

Although the SM3110 is used primarily in systems without other display adapters, the SM3110 BIOS is compatible with multiple adapter configurations supported by Windows 98 and Windows NT.

System Bus Support

The SM3110 BIOS supports two different bus environments: AGP and PCI. The PCI header is implemented in the ROM image. The PCI System BIOS reads and writes PCI configuration registers.

BIOS Modes Supported

The following modes are supported by the SM3110 BIOS. The BIOS provides mode switching for all of the video modes listed in Table 5-1.

Туре	VESA Mode No.	SM3110 Mode No.	Width	Height	Text / bpp	Colors	Refresh Rates
VGA	0		40	25	40X25	64, 16 gray	70
VGA	1	0, 1	40	25	40X25	64, 16/8 color	70
VGA	2		80	25	80X25	64, 16 gray	70
VGA	3	2, 3	80	25	80X25	64, 16/8 color	70
VGA	4		320	200		4(256)	70
VGA	5	4, 5	320	200		4, gray	70
VGA	6	6	640	200		2, gray	70
VGA	7	7	80	25		2, mono	70
VGA	D	D	320	200		16	70
VGA	Е	Е	640	200		16 planar	70
VGA	F	F	640	350		mono	70
VGA	10	10	640	350		16, 64	70
VGA	11	11	640	480	80X25	2	60
VGA	12	12	640	480	80X25	16 planar	60
VGA	13	13	320	200	40X25	256 linear	60
VESA	100	5E	640	400	8	256	60, 85
VESA	101	5F	640	480	8	256	60, 72, 75, 85
VESA	102	58, 6A	800	600	4	16	56, 60, 72, 75, 85
VESA	103	5C	800	600	8	256	56, 60, 72, 75, 85
VESA	104	5D	1024	768	4	16	60, 70, 75, 85
VESA	105	60	1024	768	8	256	60, 70, 75, 85
VESA	106	6C	1280	1024	4	16	60, 75, 85
VESA	107	62	1280	1024	8	256	60, 75, 85
VESA	109	55	132	25	132X25	16	70
VESA	10A	54	132	43	132X43	16	70
VESA	10E	61	320	200	16	65536	60, 85

Table 5-1. Supported BIOS Modes

Туре	VESA Mode No.	SM3110 Mode No.	Width	Height	Text / bpp	Colors	Refresh Rates
VESA	110	66	640	480	15	32768	60, 72, 75, 85
VESA	110	64	640	480	16	65536	60, 72, 75, 85
VESA	1112	71	640	480	24	16.8M	60, 72, 75, 85
VESA	112	67	800	600	15	32768	56, 60, 72, 75, 85
VESA	113	65	800	600	16	65536	56, 60, 72, 75, 85
VESA	115	68	800	600	24	16.8M	56, 60, 72, 75, 85
VESA	116	72	1024	768	15	32768	60, 70, 75, 85
VESA	117	73	1024	768	16	65536	60, 70, 75, 85
VESA	118	74	1024	768	24	16.8M	60, 70, 75, 85
VESA	119	75	1280	1024	15	32768	60, 75, 85
VESA	11A	76	1280	1024	16	65536	60, 75, 85
VESA	11B	77	1280	1024	24	16.8M	60, 75, 85
VESA	11C	63	640	400	16	65536	60, 85
VESA	11D	78	640	480	32	16.8M	60, 72, 75, 85
VESA	11E	79	800	600	32	16.8M	56, 60, 72, 75, 85
VESA	11F	7A	1024	768	32	16.8M	60, 70, 75, 85
VESA	120	7B	1600	1200	8	256	60, 65, 70, 75, 85
SM3110		50	320	200	8	256	60, 85
SM3110		51	320	240	8	256	60, 72, 75, 85
SM3110		52	320	240	16	65536	60, 72, 75, 85
SM3110		53	400	300	8	256	56, 60, 72, 75, 85
SM3110		56	400	300	16	65536	56, 60, 72, 75, 85
SM3110		57	512	384	8	256	60, 70, 75, 85
SM3110		59	512	384	16	65536	60, 70, 75, 85
SM3110		5A	720	480	8	256	60, 72, 75, 85
SM3110		5B	720	480	16	65536	60, 72, 75, 85
SM3110		7C	1600	1200	16	65536	60, 65, 70, 75, 85

Table 5-1. Supported BIOS Modes (continued)

5.1.1 SM3110 Specific Extended BIOS Functions

The SM3110 BIOS also provides some BIOS functions specifically designed for the SM3110 device, including some special functions which support Dual View. Dual View is the capability to display totally independent contents on LCD and CRT monitor. All of these extended BIOS functions use INT-10, with a function call value of 5Fh. They are listed in Table 5-2.

BIOS	Functions
SM3110	INT-10 (5F, 00, Query BIOS Version)
SM3110	INT-10 (5F, 01, Query Super VGA Mode Support)
SM3110	INT-10 (5F, 02, Set Super VGA Mode for Second View)
SM3110	INT-10 (5F, 03, Enable Dual View Mode)
SM3110	INT-10 (5F, 04, Disable Dual View Mode)

Table 5-2. SM3110 Specific Extended BIOS Functions

5.1.2 Standard VGA BIOS Functions

The SM3110 BIOS implements the standard VGA functions listed in Table 5-3. All of these use INT-10, with function call values 00h to 1Ch.

BIOS	Function				
VGA BIOS	INT-10h (00, Set Video Mode)				
VGA BIOS	INT-10h (01, Set Cursor Type)				
VGA BIOS	INT-10h (02, Set Cursor Position)				
VGA BIOS	INT-10h (03, Get Cursor Position)				
VGA BIOS	INT-10h (04 N/A)				
VGA BIOS	INT-10h (05, Set Active Display Page)				
VGA BIOS	INT-10h (06, Windows Scroll Up)				
VGA BIOS	INT-10h (07, Windows Scroll Down)				
VGA BIOS	INT-10h (08, Read Character/Attributes at Cursor)				
VGA BIOS	INT-10h (09, Write Character/Attributes at Cursor)				
VGA BIOS	INT-10h (0A, Write Character at Cursor)				
VGA BIOS	INT-10h (0B,0, Set Background, Border Color)				
VGA BIOS	INT-10h (0B,1, Select Palette Set)				
VGA BIOS	INT-10h (0C, Write Dot (pixel))				
VGA BIOS	INT-10h (0D, Read Dot (pixel))				
VGA BIOS	INT-10h (0E, Write TTY Character to Active Page)				
VGA BIOS	INT-10h (0F, Get Video State)				
VGA BIOS	INT-10h (10, 00, Set Palette Register)				
VGA BIOS	INT-10h (10, 01, Set Overscan (border) Register)				
VGA BIOS	INT-10h (10, 02, Set All Palette Registers and Overscan Register)				
VGA BIOS	INT-10h (10, 03, Intensity/Blinking)				
VGA BIOS	INT-10h (10, 046, Reserved)				
VGA BIOS	INT-10h (10, 07, Read Individual Palette Register)				
VGA BIOS	INT-10h (10, 08, Read Overscan (border) Register)				
VGA BIOS	INT-10h (10, 09, Read All Palette Registers and Overscan Register)				
VGA BIOS	INT-10h (10, 0AF, Reserved)				
VGA BIOS	INT-10h (10, 10, Set Individual Color Register)				
VGA BIOS	INT-10h (10, 11, Reserved)				
VGA BIOS	INT-10h (10, 12, Set Block of Color Registers)				
VGA BIOS	INT-10h (10, 13, Select Color Page)				
VGA BIOS	INT-10h (10, 14, Reserved)				
VGA BIOS	INT-10h (10, 15, Read Individual Color Register)				
VGA BIOS	INT-10h (10, 16, Reserved)				
VGA BIOS	INT-10h (10, 17, Read Block of Color Registers)				

Table 5-3. Standard VGA BIOS Functions

BIOS	Function
VGA BIOS	INT-10h (10, 18, Set DAC Mask)
VGA BIOS	INT-10h (10, 19, Get DAC Mask)
VGA BIOS	INT-10h (10, 1A, Read Current State of Color Page)
VGA BIOS	INT-10h (10, 1B, Sum Color Values to Gray Shades)
VGA BIOS	INT-10h (11, 0, Load User Text Font)
VGA BIOS	INT-10h (11, 01, Load 8x14 ROM Text Font)
VGA BIOS	INT-10h (11, 02, Load 8x8 ROM Text Font)
VGA BIOS	INT-10h (11, 03, Select Block Specifier)
VGA BIOS	INT-10h (11, 04, Load 8x16 ROM Text Font)
VGA BIOS	INT-10h (11, 10, Load User Text Font and Reprogram Controller)
VGA BIOS	INT-10h (11, 11, Load 8x14 ROM Text Font and Reprogram Controller)
VGA BIOS	INT-10h (11, 12, Load 8x8 ROM Text Font and Reprogram Controller)
VGA BIOS	INT-10h (11, 14, Load 8x16 ROM Text Font and Reprogram Controller)
VGA BIOS	INT-10h (11, 20, Set Pointer of User Graphics Font Table to INT-1F)
VGA BIOS	INT-10h (11, 21, Set Pointer of User Graphics Font Table to INT-43)
VGA BIOS	INT-10h (11, 22, Set Pointer of 8x14 ROM Graphics Font Table to INT-43)
VGA BIOS	INT-10h (11, 23, Set Pointer of 8x8 ROM Graphics Font Table to INT-43)
VGA BIOS	INT-10h (11, 26, Set Pointer of 8x16 ROM Graphics Font Table to INT-43)
VGA BIOS	INT-10h (11, 30, Get Font Information)
VGA BIOS	INT-10h (12, 10, Get Configuration Information)
VGA BIOS	INT-10h (12, 20, Select Alternate Print-screen Routine)
VGA BIOS	INT-10h (12, 30, Select Scanlines (Alphanumeric Mode))
VGA BIOS	INT-10h (12, 31, Enable/Disable Default Palette Loading)
VGA BIOS	INT-10h (12, 32, Enable/Disable Video)
VGA BIOS	INT-10h (12, 33, Enable/Disable Greyscale Summing)
VGA BIOS	INT-10h (12, 34, Enable/Disable Cursor Emulation)
VGA BIOS	INT-10h (12, 35, Switch Active Display)
VGA BIOS	INT-10h (12, 36, Enable/Disable Screen Refresh)
VGA BIOS	INT-10h (13, Write String in TTY)
VGA BIOS	INT-10h (1A, Get/Set Display Combination Code)
VGA BIOS	INT-10h (1B, Get Functionality/State Information)
VGA BIOS	INT-10h (1C, Save/Restore Video State)
VGA BIOS	INT-10h (1DFF, Reserved)

Table 5-3. Standard VGA BIOS Functions (continued)

5.1.3 VESA BIOS Extended Functions

The VESA Video BIOS Extensions (VBE version 2.0), Power Management (PM version 1.0), DDC2B (version 1.0), and Flat Panel (FP version 1.0) functions listed in Table 5-4 are implemented in the SM3110 BIOS. All of these use INT-10, with a function call value of 4Fh.

BIOS	Function
VBE	INT-10 (4F, 00, Return Super VGA Information)
VBE	INT-10 (4F, 01, Return Super VGA Mode Information)
VBE	INT-10 (4F, 02, Set Super VGA Mode)
VBE	INT-10 (4F, 03, Return Current Video Mode)
VBE	INT-10 (4F, 04, Save/Restore Super VGA Video State)
VBE	INT-10 (4F, 05, CPU Video Memory Window Control)
VBE	INT-10 (4F, 06, Set/Get Logical Scanline Length)
VBE	INT-10 (4F, 07, Set/Get Display Start)
VBE	INT-10 (4F, 08, Set/Get DAC Palette Control)
VBE	INT-10 (4F, 09, Set/Get Palette Data) (VBE 2.0)
VBE	INT-10 (4F, 0A, Return VBE Protected Mode Interface) (VBE 2.0)
PM	INT-10 (4F, 10, 00, Report VBE/PM Capabilities)
PM	INT-10 (4F, 10, 01, Set Display Power State)
PM	INT-10 (4F, 10, 02, Get Display Power State)
DDC	INT-10 (4F, 15, 00, Report VBE/DDC Capabilities)
DDC	INT-10 (4F, 15, 01, Read EDID)
FP	INT-10 (4F, 11, 00, Return Flat Panel Extensions Support Information)
FP	INT-10 (4F, 11, 01, Return Flat Panel Information)
FP	INT-10 (4F, 11, 03, Return/Select Flat Panel Shading Options)
FP	INT-10 (4F, 11, 06, Return/Select Vertical and Horizontal Positioning)
FP	INT-10 (4F, 11, 07, Return/Select Vertical and Horizontal Expansion)

Table 5-4. VESA BIOS Extended Functions

5.1.4 SCRATCHPAD Register Usage

There are eight scratchpad registers which can be accessed through the GRC index/data port of 3CE/FH (see Section 4.3.7, Enhanced VGA Registers). These are defined for the SM3110 as shown here.

Index	Field	Access	Function			
88	07:00	R/W	Refresh rate control			
	Bits	Field				
	07:04	Refresh ra	sh rate for 640 x 400.			
	03:00	Refresh ra	Refresh rate for 320 x 200.			
		Value Semantics				
		0H	Reserved.			
		1H 60 Hz.				
		2H	85 Hz.			
		3H-FH	Reserved.			

Index	Field	Access	Function	
89	07:00	R/W	Refresh rate control	
	Bits	Field		
	07:04	Refresh rate for 640 x 480		
	03:00	Refresh ra	ate for 320 x 240.	
	Value Semantics			
		0H	Reserved.	
		1H	60 Hz.	
		2H	72 Hz.	
		3Н	75 Hz.	
		4H	85 Hz.	
		5H-FH	Reserved.	

Index	Field	Access	Function
8 A	07:00	R/W	Refresh rate control
	Bits	Field	
	07:04	Refresh ra	ate for 800 x 600.
	03:00	Refresh ra	ate for 400 x 300.
		Value	Semantics
		0H	Reserved.
		1H	56 Hz.
		2H	60 Hz.
		3H 72 Hz.	
		4H	75 Hz.
		5H	85 Hz.
		6H-FH	Reserved.

Index	Field	Access	Function
8B	07:00	R/W	Refresh rate control
	Bits	Field	
	07:04	Refresh ra	ate for 1024 x 768
	03:00	Refresh ra	ate for 512 x 384.
		Value	Semantics
		0H	Reserved.
		1H	60 Hz.
		2H 70 Hz.	
		3H	75 Hz.
		4H	85 Hz.
		5H-FH	Reserved.

Index	Field	Access	Function
8 C	07:00	R/W	Refresh rate control
	Bits	Field	
	07:04		te for 1600 x 1200.
		Value	Semantics
		0H	Reserved.
		1H	60 Hz.
		2H	65 Hz.
		3Н	70 Hz.
		4H	75 Hz.
		5H	85 Hz.
		6H-FH	Reserved.
	03:00	Refresh ra	te for 1280 x 1024.
		Value	Semantics
		0H	Reserved.
		1H	60 Hz.
		2Н	75 Hz.
		3Н	85 Hz.
		4H-FH	Reserved.
Index	Field	Access	Function
8B	07:00	R/W	Refresh rate control
	Bits	Field	
	07:04	Reserved	
	03:00		te for 720 x 480
		Value	Semantics
		0H	Reserved.
		1H	60 Hz.
		2H	72 Hz.
		3Н	75 Hz.
		4H	85 Hz.
		5H-FH	Reserved.

Index	Field	Access	Function
8 E	07:00	R/W	Current Video Mode Number
	Bits	Field	
	07:00	Current v	video mode number.

Index	Field	Access	Function	
8F	07:00	R/W	Video Memory Size	
	Bits	Field		
	07:00	Total video memory size available, in multiples of 64K units.		

5.2 VGA BIOS Functions

The SM3110 VGA BIOS is a high-performance firmware product optimized to take full advantage of the SM3110 VGA controllers. The SM3110 BIOS is based on proven BIOS technology, and is fully compatible with the IBM VGA BIOS INT 10h interface and the VESA/VBE 2.0 interface. The BIOS is designed to provide a well-defined interface between MS-DOS, application software, and special OEM utility programs. In addition, it provides an extended set of functions to support the SM3110 VGA controller, including high-resolution extended video mode support, direct-color operation, high-performance adapter or system board implementation and system BIOS integration and customization.

Extended Video Mode Support

The SM3110 VGA BIOS provides full support for all extended high-resolution video modes by INT 10h function calls. In addition, the SM3110 BIOS supports a variety of extended functions, such as extended VGA mode inquiry and mode switching for dual view.

Direct-Color Operation

The SM3110 BIOS supports Direct-color and True-color video modes. These modes allow the SM3110 to display 32,768 colors, 65,636 colors, or 16.8 million colors at resolutions of up to 1280x1024.

High Performance

The SM3110 BIOS is optimized to provide maximum performance in adapter or motherboard implementations. The SM3110 local bus, display memory interface, memory clock, and dot clock configurations are configurable using the VGA BIOS.

In addition, time-critical routines such as TTY output and scroll are designed to provide maximum throughput in both text and graphics modes.

Customization

The default SM3110 BIOS is designed for use, without modification, in almost all environments. However, the SM3110 BIOS can be easily customized for a specific system environment with the SM3110 BIOS Utility program. Such modifications do not require the SM3110 BIOS source code. Many of the BIOS parameters and features including the sign-on message or logo, video mode parameter tables, font tables and LCD panel parameter tables can be modified.

Compatibility

The SM3110 BIOS is fully compatible with the IBM VGA BIOS and supports BIOS-level compatibility for an adapter card or integrated VGA on the system board. In addition, the SM3110 BIOS complies fully with the video modes and specifications issued by the Video Electronics Standards Association (VESA).

5.2.1 SM3110 Extended BIOS Functions (5Fh)

The SM3110 BIOS provides a set of function calls to control operation of the extended features of the SM3110 Flat Panel/CRT VGA Controller. These function calls are implemented as sub-functions under the extended VGA control function (5Fh).

5.2.1.1 Subfunction: 00h - Query BIOS Version

This function returns the BIOS version number.

Input:	AH	= 5Fh	
	AL	= 00h	Query BIOS version
Output:	AX	= 005Fh	Success
		= 015Fh	Function not supported
	BH	=	Version, major
	BL	=	Version, minor

All other registers are preserved.

5.2.1.2 Subfunction: 01h - Query VBE Mode Support

This function returns whether the BIOS supports a specific VBE display mode.

Input:	AH	= 5Fh	
	AL	= 01h	Query VBE mode support
	CX	=	Mode number
Output:	AX	= 005Fh	Mode supported
		= 015Fh	Mode not supported
	BX	=	Mode number
	CX	=	Maximum Refresh Rate if success, else it is FFh

5.2.1.3	Subfunction: 02h - Set VBE Mode for Second View					
	This funct	ion sets t	ne desired video mode to the second display channel.			
	Input: Output:	AH AL BX CX AX	 = 5Fh = 02h Set VBE mode support = Desired mode number = starting address = 005Fh Mode set successfully 			
			= Other Fail			
		All othe	er registers are preserved.			
	NOTES:					
	1)	 This function can only be called to set to VESA enhanced modes or SM3110 modes. Calling this function to set to standard VGA modes will fail. 				
	2) This function will not clear video memory if bit 15 of BX is set.					
5.2.1.4	Subfunction: 03h - Enable Second View Mode					
	This function	on enables	Second Display and switch to Dual View Mode			
	Input:	AH AL	= 5Fh = 03h Enable Dual View Mode			
	Output:	AX	= 005Fh Success = 015Fh Fail			
5.2.1.5	Subi	Subfunction: 04h - Disable Second View Mode				
	This function	on will turn	off the second display and switch to simultaneous view.			
	This function	on disable:	s Dual View Mode.			
	Input	AH	= 5Fh			

input	AH	= 5⊦n	
	AL	= 04h	Disable Dual View Mode
Output:	AX	= 005Fh	Success
		= 015Fh	Fail

5.2.2 Standard VGA BIOS Functions

- 5.2.2.1 Function: 00h Set Video Mode
 - Input: AH = 00h AL = Vide
 - Video mode (see below)
 - Output: None
 - NOTES:
 - 1) Refer to the table of standard VGA video modes.
 - 2) If bit 7 of AL is set, the display buffer is not cleared. Otherwise, the display buffer is cleared during mode setting (EGA, VGA only) (Clear Screen).
 - 3) No hardware cursor in graphics modes.
 - 4) Default mode during POST: mode = 3h for Color Monitor, and mode = 07h for Monochrome Monitor.
 - 5) There is no difference between modes 00h and 01h, 02h and 03h, or 05h and 06h on EGA/VGA. These mode are different only on a CGA which supports composite video displays.
 - 6) The default settings of each video mode can be overridden by several subfunctions in Function 12h or by the supplied user's video service table, whose address is stored in BIOS data area 0040:00A8h.
 - 7) See Table 5-1, "Supported BIOS Modes," for a list of Mode numbers.

5.2.2.2	Function: 01h - Set Cursor Type				
	Input:	AH =	01h		
		CH =	Start scanline of cursor (0 base)		
		CL =	End scanline of cursor (0 base)		
	Output:	None			

NOTES:

- 1) This function is only available in text modes. The value of cursor types are stored at [40:60].
- 2) The definition of value in register CH:

Register CH Value Definition

Bit	Definition
7:6	Reserved = 0
5	1 = No cursor display
	0 = Normal blinking cursor
4:0	Start scanline (0 base)

3) The definition of value in register CL:

Register CL Value Definition

Bit	Definition
7	Reserved = 0
6:5	Number of character skew
4:0	End scanline (0 base)

4) Default setting:

Default Settings

Font Size	Start	End
8 · 8	6	7
8 · 14	11	12
8 · 16	13	14

5) To allow cursor displaying as the values set in the function call, turn off cursor emulation. The Cursor Emulation Flag is located in bit 0 of [40:87]. Turn it on/off with Subfunction 34h of Function 12h call.

5.2.2.3	Fun	ction: 02h -	Set Cursor Position
	Input:	AH =	02h
		BH =	Display page (0 base)
		DH =	Row number of cursor location start (0 base)
		DL =	Column number of cursor location end (0 base)
	Output:	None	

NOTES:

- 1) This function is available for both text and graphics modes.
- 2) If register DL is specified greater than the width of screen in the display area, this causes the cursor to wrap to the next row. If register DH is specified greater than the height of screen in the display area, this causes the cursor to disappear.
- 3) Default setting for each mode: Cursor Location at 0000h.
- BIOS maintains one cursor location for each page and supports up to eight pages. These values are recorded at [40:50]and occupy eight words (one word for each location).

5.2.2.4 Function: 03h - Get Cursor Position

- Input: AH = 03h BH = Display page (0 base)
- Output: CH = Start scanline of cursor (0 base)
 - CL = End scanline of cursor (0 base)
 - DH = Row number of cursor start location (0 base)
 - DL = Column number of cursor end location (0 base)

NOTES:

1) Cursor type is same for all pages. The cursor location of each page is maintained separately.

5.2.2.5 Function: 04h - Light Pen -- (Not Supported)

5.2.2.6 Function: 05h - Select Active Display Page Input: AH = 05h AL = Display page (0 base) Output: None

- 1) The contents of each page are not altered by changing to other pages.
- 2) Please refer to the video mode table of Function 00h.

5.2.2.7	Funct	ion: (06h - Window Scroll Up
	Input:	AH	
		AL	 Number of rows to be scrolled up
			(0 = scroll up and clear entire window)
		BH	
		СН	
		CL	 X coordinate of top left corner of window (0 base)
		DH	 Y coordinate of bottom right corner of window (0 base)
		DL	 X coordinate of bottom right corner of window (0 base)
	Output:	Nor	ne
	NOTES	:	
		1)	When it encounters the number of rows of window equal to the value in register AL or when $AL = 0$, this function clears the entire window.
		2)	The image outside the window is not changed and the cursor is not updated.
		3)	Whenever an old line at the top of window is scrolled out of window, a new blank line, with attribute value specified in BH, is inserted from the bottom of window.
		4)	This function is available for both text and graphics modes.

5.2.2.8 Function: 07h - Window Scroll Down

i un		
Input:	AH =	07h
	AL =	Number of rows to be scrolled down
		(0 = scroll down and clear entire window)
	BH =	Attribute to be used in inserting blank lines
	CH =	Y coordinate of top left corner of window (0 base)
	CL =	X coordinate of top left corner of window (0 base)
	DH =	Y coordinate of bottom right corner of window (0 base)
	DL =	X coordinate of bottom right corner of window (0 base)
Output:	None	- · · · · · · · · · · · · · · · · · · ·

- This function clears entire window when it encounters the number of rows of window equal to the value in register AL or when AL = 0.
- 2) The image outside the window is not changed and the cursor is not updated.
- 3) Whenever an old line at the bottom of window is scrolled out of window a new blank line, with attribute value specified in BH, is inserted from the top of window.
- 4) This function is available for both text and graphics modes.

5.2.2.9	Funct	ion: 08h ·	Read Character/Attribute at Cursor Position
	Input:	AH =	08h
		BH =	Display page (0 base)
	Output:	AH =	Attribute (Valid on text modes)
		AL =	ASCII character code

- 1) This function is able to read data from other valid inactive pages in multiple page modes at any time.
- 2) After reading a character from the screen, the cursor is not updated and it must be moved manually.
- 3) No control characters such as, LF, CR, BACKSPACE, and BELL, are recognized.
- 4) In Graphics modes 04h–06h of CGA adapter, the first half of character font (Code 00h–7Fh) is only maintained in system ROM. To support the second half of character font (Code 80h–FFh), the Interrupt Vector 1Fh at 0000:007Ch, must be initialized to point to the second half of character font.
- 5) Graphics modes only return the Character Code. Three characters, 00h/20h/ FFh, cannot be distinguished, and the function always reads them back as Character Code 00h.
- 6) When they are written with the same color in the background color in graphics modes, the character codes are read back as Character Code 00h.

5.2.2.10	Fu	nction: 09h <mark>-</mark>	Write Character/Attribute at Cursor Position
	Input:	AH =	09h
		AL =	ASCII character code
		BH =	Display page (0 base)
		or	
		BL =	Attribute (text modes)
			Display color (graphics modes)
		CX =	Repeat character count

Output: None

- 1) This function is able to write data to other valid inactive pages in multiple page modes at any time.
- 2) After reading a character from the screen, the cursor is not updated and it must be moved manually.
- 3) No control characters such as, LF, CR, BACKSPACE, and BELL, are recognized.
- 4) Graphics modes 04h–06h of CGA adapter, the first half of character font (Code 00h–7Fh) is maintained in system ROM. To support the second half of character font (Code 80h–FFh), the Interrupt Vector 1Fh at 0000:007Ch, must be initialized to point to the second half of character font.
- 5) In graphics modes, the color (attribute) is treated as pixel color to generate an ASCII character pattern. The color value is masked according to the number of colors in the video modes.
- 6) When they are written with the same color in the background color in graphics modes, the character codes are displayed as blank.
- The characters written to the screen, specified in CX, should not extend to the next row in graphics modes or invalid results are generated.
- If bit 7 of register BL is set, the function takes the color value X'OR with the value in display memory (valid in all graphics modes except mode 13h). Use this feature in fast character/dot erasing.

Function: 0Ah - Write Character at Cursor Position Input:

- AH =0Ah
- AL = ASCII character code
- BH =Display page (0 base)
- BL = Foreground color (graphics modes does not)
- CX = Repeat character count

Output: None

or

- 1) This function is able to write data to other valid inactive pages in multiple page modes at any time.
- 2) After reading a character from the screen, the cursor is not updated and it must be moved manually.
- 3) No control characters such as, LF, CR, BACKSPACE, and BELL, are recognized.
- 4) In Graphics modes 04h–06h of CGA adapter, the first half of character font (Code 00h-7Fh) is only maintained in system ROM. To support the second half of character font (Code 80h-FFh), the Interrupt Vector 1Fh at 0000:007Ch, must be initialized to point to the second half of character font.
- 5) In graphics modes, the color (attribute) is treated as pixel color to generate an ASCII character pattern. The color value is masked according to the number of colors in the video modes.
- 6) When they are written with the color same as background color in graphics modes, the character codes are displayed as blank.
- 7) The characters written to screen, specified in CX, should not extend to the next row in graphics modes or invalid results are generated.
- 8) If bit 7 of register BL is set, the function will take the color value XOR'ed with the value in display memory (valid in all graphics modes except mode 13h). This feature is applicable in fast character/dot erasing.

BIOS Specifications

5.2.2.12 Function: 0Bh - Background/Border, Palette

Subfunction: 00h — Set Background/Border

Input:	AH =	0Bh
	BH =	00h
	BL =	Color Value (0–31: Low-Intensity Colors = 0–15,
		High-Intensity Colors = 16–31)
		 Border Color for text modes (modes 00h–03h)
		– Color for 640 X 200 Graphics mode (mode 06h)
Output:	None	

NOTES:

1) There are several functions in Function 10h that allow extensive display-colors control for both text and graphics modes.

Subfunction: 01h — Select Palette Set

Input:	AH =	0Bh
	BH =	01h (Valid on modes 04h and 05h 320 x 200 only)
	BL =	0 – palette set: Background, Green, Red, Brown
		1 – palette set: Background, Cyan, Magenta, White
Output:	None	

NOTES:

1) For the CGA adapter, the palette set is defined as follows:

CGA Palette Set

Mode	BL	Palette Set
04h	00h	Background, Green, Red, Yellow
	01h	Background, Cyan, Violet, White
05h	00/01h	Background, Cyan, Red, White

5.2.2.13	Functio	on: 0Ch -	Write Dot (Pixel)
	Input:	AH =	0Ch
		AL =	Color value for pixel (bit 7 is XOR'ed flag)
		BH =	Display page (0 base)
		CX =	X coordinate, column number (0 base)
		DX =	Y coordinate, row number (0 base)
	Output:	None	

NOTES:

- For coordinate range, refer to the resolution field of video mode for 1) Function 00h.
- If bit 7 of AL register is set, it causes the requesting color value 2) X'ORed with memory color value.

Function: 0Dh - Read Dot (Pixel) 5.2.2.14 0Dh

Input: AH =

- Display page (0 base) BH =
- CX = X coordinate, column number (0 base)
- Y coordinate, row number (0 base) DX =

Dot (Pixel) color Output: AL =

NOTES:

For coordinate range, please refer to the resolution field of video 1) mode for Function 00h.

Function: 0Eh - Write Character to Active RAM in TTY Mode Input:

- AH =0Eh
- AL = ASCII character
- BL = Foreground color in graphics modes

Output: None

NOTES:

- Control characters such as LF, CR, Backspace, and BELL are rec-1) ognized. (ASCII Codes: LF = 0AH, CR = 0DH, Backspace = 08H, and BELL = 07H).
- Line wrapping and screen scrolling are supported. 2)
- After writing a character to the screen, the cursor is moved to the 3) next position.
- 4) If PC BIOS Version is10/19/81 or earlier; set register BH to a '0'.
- 5) If bit 7 of the register is set in graphics modes. the color value in register BL is XOR'ed with the content of display memory.
- 6) In text modes, the attribute of a character written to a new line is taken from the attribute of the last character in previous line. To control the attribute for a character, use function 09h with blank character/attribute before the function issued.

5.2.2.16 Function: 0Fh - Get Video State

Input:

Output:

AH =0Fh

AH =Number of displayable columns (1 base)

- AL = Current video mode
- BH = Current active page (0 base)

BIOS Specifications

5.2.2.17 Function: 10h - Palette Register (Subfunctions)

Subfunction: 00h—Set Individual Palette Register (Internal Palette Register)

Input: AH = 10h AL = 00h (Subfunction) BH = Color value BL = Palette register (0-0Fh)Output: None

NOTES:

- 1) Color value in the Internal Palette register serves as a pointer that points to one of the external registers (RAMDAC).
- 2) In mode 13h, the color would not be changed by this function

Subfunction: 01h - Set Overscan (Border) Register

Input:	AH =	10h
	AL =	01h (Subfunction)
	BH =	Color value (00h-FFh)
Output:	None	

NOTES:

1) Border color is driven by one of 256 external registers.

Subfunction: 02h — Set All Palette Registers and OverScan Register

Input:	AH = 10h
	AL = 02h (Subfunction)
	ES: DX = Points to a 17-byte buffer
Output:	None

- 1) The first 16 bytes in the buffer store the values for 16 Internal Palette registers. The last byte is the value for Overscan register.
- 2) The display color is not affected, except for the Overscan register in mode 13h.

Subfunction: 03h — Toggle Intensify/Blinking Bit

Input: AH = 10h AL = 03h (Subfunction) BL = 00h-Intensify 01h-Blinking Output: None

NOTES:

- 1) Bit 7 of Attribute Byte is interpreted according to the setting state by this function. This function can provide 16 background colors (in intensify state) of 16-color text modes.
- 2) This function also supports Monochrome modes (07h, 0Fh).

Subfunction: 04h - 06h — Reserved

Subfunction: 07h — Read Individual Palette Register (Internal Palette Register)

Input:	AH =	10h
	AL =	07h (Subfunction)
	BL =	Palette register (0–0Fh)
Output:	BH =	Color value

NOTES:

1) Color Value in Internal Palette register is served as a pointer that points to one of the external registers (RAMDAC).

Subfunction: 08h — Read Overscan (Border) Register

Input:	AH =	10h
	AL =	08h (Subfunction)
Output:	BH =	Color value

NOTES:

1) Border color is from 00h to FFh.

Subfunction: 09h — Read All Palette Registers and OverScan Register

Input:	AH =	10h
	AL =	09h (Subfunction)
	ES: DX =	Points to a 17-byte buffer
		(The first 16 bytes for returning values from 16 palette registers
		respectively and the last byte for Overscan register.)
Output:	ES: DX =	Points to the same buffer that was provided to the function call.

Subfunction: 0A-0Fh — Reserved

Subfunction: 10h — Set Individual Color Register (RAMDAC/External Palette Registers)

Input:	AH =	10h
-	AL =	10h (Subfunction)
	BX =	Color register (00h–FFh)
	DH =	Red color
	CH =	Green color
	CL =	Blue color
Output [.]	None	

Julpul None

NOTES:

- Each color only has 6 significant bits. Three colors (RED, GREEN, 1) and BLUE) are formed into a 18-bit datum stored in the Color register.
- 2) The maximum number of displayable colors is 256 out of 262,000 colors.
- 3) In standard VGA, mode 13h uses all 256 Color registers to display colors.
- 4) Whenever Function 00h (Set Video mode) is called, the BIOS loads default values into Color registers. This is only true when the default palette loading disable flag is not set (refer to Subfunction 31h of Function 12h).
- With the gray-summing flag set, the value returned for all three col-5) ors is the grayshade value.

Subfunction: 11h — Reserved

Subfunction: 12h — Set Block of Color Registers

Input:

- AH = 10h
- AL = 12h (Subfunction)
 - BX = Start Color register (00h–FFh)
 - CX = Number of color registers to set
 - ES: DX = Points to table of color values

(each table entry is in RGB format)

Output: None

- 1) Each color only has 6 significant bits. Three colors; RED, GREEN, BLUE, are formed into a 18-bit datum stored in the Color register.
- 2) The number of maximum displayable colors is 256 of 262,144 (2¹⁸) possible colors.
- 3) In standard VGA, mode 13h uses all 256 Color registers to display colors.
- 4) Whenever Function 00h (Set Video mode) is called, BIOS loads default values into Color registers. This is only true when the disable flag, of default palette loading, is not set (refer to Subfunction 31h of Function 12h).
- 5) With the gray-summing flag set, the value returned for all three colors is the grayshade value.

Subfunction: 13h — Select Color Page (Not valid on Mode 13h)

Input:	AH =	10h
	AL =	13h (Subfunction)
	BL =	00h (select paging mode)
		01h (select color page)
		When BL = 00h -
		BH = 00h (select 4 pages of 64-color register page)
		01h (select 16 pages of 16-color register page)
		When BL = 01h -
		BH = Color page number (0 base)
Output:	None	

NOTES:

- 1) Except for 256-color modes, all video modes are supported by the function.
- This function treats 256-color registers as sets of 16- or 64-color registers. It can be used to display different colors quickly by switching among color sets (pages).
- 3) After Video mode is set, Default setting is Page 0 of 64-color Page mode. Normally, Function 00h (set Video mode) loads the default colors of the first 64-color registers (Page 00h). These are loaded for all standard VGA modes, except mode 13h (248 registers loading).

Subfunction: 14h — Reserved

Subfunction: 15h — Read Individual Color Register (RAMDAC/External Palette Registers)

Input:	AH =	10h
	AL =	15h (Subfunction)
	BX =	Color register (00h–FFh)
Output:	DH =	Red color
	CH =	Green color
	CL =	Blue color

NOTES:

- 1) The maximum number of displayable colors is 256 out of 262,144 colors.
- 2) In standard VGA, mode 13h uses all 256-color registers to display colors.
- 3) With the gray-summing flag set, the value returned for all three color elements of Color register is the grayshade value.

Subfunction: 16h — Reserved

Subfunction: 17h — Read Block of Color Registers

Input:	AH = 10h
	AL = 17h (Subfunction)
	BX = Start Color register (00h–FFh)
	CX = Number of Color registers to read
	ES:DX = Point to user provided buffer for returned color values
Output:	ES:DX = Points to same buffer from function call entry
	(buffer is treated as a color table and each entry of the table
	consists of three bytes in RGB format).
	- · · · · · · · · · · · · · · · · · · ·

- 1) Each color is a 6-bit value. All three colors form a 18-bit datum.
- 2) The maximum colors displayable are 256 out of 262,144 colors.
- 3) In standard VGA, mode 13h uses all 256-color registers to display colors.
- 4) Whenever Function 00h (set Video mode) is called, BIOS loads default values into Color registers. This is only true when the disable flag of default palette loading is not set (please refer to Subfunction 31h of Function 12h).
- 5) With the gray-summing flag set, the value returned for all three colors is the grayshade value.

Subfunction: 18h — Set DAC Mask

Input:	AH =	10h
	AL =	18h (Subfunction)
	BL =	DAC mask
Output:	None	

Subfunction: 19h — Get DAC Mask

Input:	AH =	10h
	AL =	19h (Subfunction)
Output:	BX=	DAC mask

Subfunction: 1Ah — Read Current State of Color Page (Not valid on Mode 13h)

Input:	AH =	10h
	AL =	1Ah (Subfunction)
Output:	BH =	Current page
		(Value depends on paging mode. 00h is the default.)
	BL =	Current Paging mode
		(00h = 4 pages of 64-Color registers (default),
		01h = 16 pages of 16-color registers)

- 1) All video modes except 256-color modes are supported by the function.
- This function treats 256-color registers as sets of 16- or 64-color registers. It can be used to display different colors quickly by switching among color sets (pages).
- 3) After Video mode set, default setting is page 00h of 6-color page mode.

Subfunction: 1Bh — Sum Color Values to Grayshades

Input: AH = 10h AL = 1Bh (Subfunction) BX = Start Color register (00h–FFh) CX = Number of Color registers to sum Output: None

NOTES:

1) This function combines the required color registers into grayshade values regardless of the gray-summing flag.

5.2.2.18 Function: 11h - Character Generation (Subfunctions)

Subfunction: 00h — Load User Text Font

Input:	AH =	11h
	AL =	00h (Subfunction)
	BH =	Number of bytes per character
	BL =	Block to load (00h–07h)
	CX =	Number of characters to store
	DX =	ASCII character ID of the first character in the font table
		(ES: BP)
	ES:BP =	Points to the user-provided font table
Output:	None	

NOTES:

- 1) This function is only available for text modes. The value in register BH represents the height of each character and can be specified a maximum of 32-bytes-per-character in standard VGA specification.
- 2) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time, and is only available for the Character Generator. Consequently, the block value specified in register BL ranges from 00h (default) to 07h.
- 3) Out of eight character fonts, two fonts can be used at any time. This provides 512 simultaneously displayable characters instead of 256 characters. Two fonts may be displayed this way:
 - a) Load the fonts into desired blocks.
 - b) Out of eight font blocks, Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks; one for a primary font and the other for a secondary font.

Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.

Bit 3 = 0 — Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.

Bit 3 = 1 — Secondary font selected and normal display (eight foreground colors) else Bit 3 = 1 — Secondary font selected and intensity display (16 foreground colors)

- 4) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 5) Since the controller is not reprogrammed, abnormal character display may occur. Consequently, the font loading by Subfunction 00h requires caution. For example, if a font table is loaded to override the font in a block, a double image can result (especially when the loaded font size is smaller than the one previously displayed).

Subfunction: 01h — Load 8 x 14 ROM Font

Input:	AH =	11h
	AL =	01h (Subfunction)
	BL =	Block to load (00h-07h)
Output:	None	

NOTES:

- 1) This function is only available for text modes.
- 2) This subfunctioon actually loads an 8 x 16 font.
- 3) The height of character is 14 bytes but the height of display cell is same as default setting.
- 4) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time and is only available for the Character Generator. Consequently, the block value specified in register BL ranges from 00h (default) to 07h.
- 5) Two out of eight character fonts can be used at any time. Instead of 256 characters, this provides 512 simultaneously displayable characters. Two fonts may be displayed this way:
 - a) Load fonts into desired blocks.
 - b) Out of eight font blocks, subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks; one for the primary font and one for the secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.
 Bit 3 = 0 Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.
 Bit 3 = 1 Secondary font selected and normal display (eight foreground colors) else
 Bit 3 = 1 Secondary font selected and intensity display

(16 foreground colors)

- 6) Default setting by BIOS loads a font into Block 0, which is used for both the primary font and the secondary font (256 displayable character).
- 7) Since the controller is not reprogrammed and abnormal character display can occur, the font loading by Subfunction 00h requires caution. For example, if a font table is loaded to override the font in a block, a double image can result (especially if the loaded font size is smaller than the one previously displayed).

Subfunction: 02h — Load 8 x 8 ROM Font

Input:	AH =	11h
	AL =	08h (Subfunction)
	BL =	Block to load (00h-07h)
Output:	None	

- 1) This function is only available for text modes.
- 2) The height of the character is eight bytes, but the height of the display cell is the same as the default setting.
- 3) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time and is only available for the Character Generator. Consequently, the block value specified in register BL ranges from 00h (default) to 07h.
- 4) Two out of eight character fonts can be used at any time. Instead of 256 characters, this provides 512 simultaneously displayable characters. Two fonts may be displayed this way:
 - a) Load fonts into desired blocks.
 - Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks out of eight font blocks; one for primary font, the other for secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.
 Bit 3 = 0 Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.
 Bit 3 = 1 Secondary font selected and normal display (eight foreground colors) else Bit 3 = 1 Secondary font selected and intensity display (16 foreground colors)
- 5) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 6) Since the controller is not reprogrammed and abnormal character display can occur, the font loading by Subfunction 00h requires caution. For example: if a font table is loaded to override the font in a block, a double image can result (especially if the loaded font size is smaller than the one previously displayed).

Subfunction: 03h — Select Block Specifier

Input:	AH =	11h
	AL =	03h (Subfunction)
	BL =	Selection of character generator blocks
Output:	None	-

NOTES:

1) The definition of the value in register BL as follows:

Register BL Value

Bits	Font	Blocks
4, 1, 0	Primary Font	Block (00h–07h)
5, 3, 2	Secondary Font	Block (00h-07h)

- 2) For EGA-compatible operation, bits 0-1 are used for primary font, and bits 2-3 for secondary font.
- To retain eight consistent colors during 512-character display, the Subfunction 00h of Function 10h must be called first, in the following setting:

AX = 1000h BX = 0712h

Subfunction: 04h — Load 8 x 16 ROM Font

Input:	AH =	11h
	AL =	04h (Subfunction)
	BL =	Block to load (00h-07h)
Output:	None	

- 1) This function is only available for text modes.
- 2) The height of character is 16 bytes, but the height of the display cell is the same as the default setting.
- 3) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time and is only available for the Character Generator. Consequently, the block value specified in register BL ranges from 00h (default) to 07h.
- 4) Two out of eight character fonts can be used at any time. Instead of 256 characters, this provides 512 simultaneously displayable characters. The way to display two different fonts at one time is described in the following procedure:
 - a) Load fonts into desired blocks.
 - b) Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks out of eight font blocks; one for primary font, the other for secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.
 Bit 3 = 0 Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.
 Bit 3 = 1 Secondary font selected and normal display (eight foreground colors) else
 Bit 3 = 1 Secondary font selected and intensity display (16 foreground colors)
- 5) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 6) Since the controller is not reprogrammed and abnormal character display can occur, the font loading by Subfunction 00h requires caution. For example: if a font table is loaded to override the font in a block, a double image can result (especially if the loaded font size is smaller than the one previously displayed).

Subfunction: 10h — Load User Text Font and Reprogram Controller

- Input:
- AH = 11h
- AL = 10h (Subfunction)
 - BH = Number of bytes per character
 - BL = Block to load (00h–07h)
 - CX = Number of characters to store
 - DX = ASCII character ID of the first character in the font table (ES: BP)
 - ES: BP = Points to the user-provided font table

Output:

NOTES:

None

- 1) This function is only available for text modes.
- The value in register BH represents the height of each character. It can be specified a maximum of 32 bytes per character in standard VGA specification.
- 3) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time, and is only available for the Character Generator. Consequently, the block value specified in register BL is ranged from 00h (default) to 07h.
- 4) Two out of eight character fonts can be used at any time. Instead of 256 characters, this provides 512 simultaneously displayable characters. The way to display two different fonts at one time is described in the following procedure:
 - a) Load fonts into desired blocks.
 - b) Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks out of eight font blocks; one for primary font and the other for secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.
 Bit 3 = 0 Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.
 Bit 3 = 1 Secondary font selected and normal display (eight foreground colors) else
 Bit 3 = 1 Secondary font selected and intensity display (16 foreground colors)
- 5) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 6) Subfunction 10h is almost identical to Subfunction 00h, except for the following differences:

- a) Page 00h must be active.
- b) Character Height (bytes-per-character) is recalculated.
- c) Number of rows (0 base) are recalculated as: (Scanlines-per-screen/Character Height) minus 1.
- d) The length of display buffer (1 base) is recalculated as (Total number of rows x Number of columns) x 2.
- e) The CRTC registers are reprogrammed as follows:

Index	Register Name	Change
09h	Maximum scanlines	Character Height minus 1
0Ah	Cursor Start	Character Height minus 2
0Bh	Cursor End	Character Height minus 1
12h	Vertical Display Enab For 350 or 400 scanli (Rows/screen x Char For 200 scanline mod ((Rows/screen x Cha	ne modes acter Height) - 1
14h	Underline Location	
f)	(mode 07h only) It must be called immediately after Function 00h call (Set Video mode), otherwise the result is unpredictable.	

Subfunction: 11h — Load 8 x 14 ROM Font & Reprogram Controller

Input:	AH =	11h
-	AL =	11h (Subfunction)
	BL =	Block to load (00h–08h)
Output:	None	

NOTES:

- 1) This function is only available for text modes.
- 2) Note that this subfunction actually loads an 8 x 16 font.
- 3) The character and display cells are both 14 bytes high (scanlines).
- 4) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time and is only available for the Character Generator. Consequently, the block value specified in register BL is ranged from 00h (default) to 07h.
- 5) Two out of eight character fonts can be used at any time. Instead of 256 characters, this provides 512 simultaneously displayable characters. The way to display two different fonts at one time is described in the following procedure:
 - a) Load fonts into desired blocks.
 - b) Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks out of eight font blocks; one for primary font, the other for secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.

Bit 3 = 0 — Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.

Bit 3 = 1 — Secondary font selected and normal display (eight foreground colors)

else

Bit 3 = 1 — Secondary font selected and intensity display (16 foreground colors)

- 6) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 7) Subfunction 11h is almost identical to Subfunction 01h, except for the following differences:
 - a) Page 00h must be active.
 - b) Character Height = 14

Number of rows (0 base) are recalculated as:

(Scanlines-per-screen/Character Height) minus 1.

- d) The length of display buffer (1 base) is recalculated as (Total number of rows X Total number of columns) x 2 .
- e) The CRTC registers are reprogrammed as follows:

Index	Register Name	Change
09h	Maximum scanlines	13 (0Dh)
0Ah	Cursor Start	13 (0Dh)
0Bh	Cursor End	13 (0Dh)
12h	Vertical Display Enable End	(Rows/screen X 14) - 1
14h	Underline Location	13 (0Dh) (mode 07h only)
	f) It must be called immediately after Function 00h call (se	
	09h 0Ah 0Bh 12h	IndexRegister Name09hMaximum scanlines0AhCursor Start0BhCursor End12hVertical Display Enable End14hUnderline Location

Video mode) or the result is unpredictable.

Subfunction: 12h — Load 8 x 8 ROM Font & Reprogram Controller

Input:	AH =	11h
-	AL =	12h (Subfunction)
	BL =	Block to load (00h–07h)
Output:	None	

NOTES:

- 1) This function is only available for text modes.
- 2) The height of character and display cell are all eight bytes (scanlines).
- 3) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time and is only available for the Character Generator. Consequently, the block value specified in register BL is ranged from 00h (default) to 07h.
- 4) Two out of eight character fonts can be used at any time. This provides 512 simultaneously displayable characters, instead of 256 characters. The way to display two different fonts at one time is described in the procedure below.
 - a) Load fonts into desired blocks.
 - b) Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks out of eight font blocks; one for primary font, the other for secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.

Bit 3 = 0 — Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.

Bit 3 = 1 — Secondary font selected and normal display (eight foreground colors)

else

Bit 3 = 1 — Secondary font selected and intensity display (16 foreground colors)

- 5) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 6) Subfunction12h is almost identical to Subfunction 02h, except for the following differences:
 - a) Page 00h must be active.
 - b) Character Height = 8.
 - c) Number of rows (0 base) are recalculated as:

(Scanlines-per-screen/Character Height) minus 1.

- d) The length of display buffer (1 base) is recalculated as (Total number of rows X Number of columns) X 2.
- e) The CRTC registers are reprogrammed as follows:

-,		
Index	Register Name	Change
09h	Maximum scanlines	7 (07h)
0Ah	Cursor Start	6 (06h)
0Bh	Cursor End	7 (07h)
12h	Vertical Display Enable End	(Rows/screen · 8) - 1
14h	Underline Location	7 (07h)
	(mode 07h only)	
f)	It must be called immediately a	after Function 00h call

f) It must be called immediately after Function 00h call (set Video mode) or the result is unpredictable.

Subfunction: 14h — Load 8 x 16 ROM Font & Reprogram Controller

Input:	AH =	11h
	AL =	14h (Subfunction)
	BL =	Block to load (00h–07h)
Output:	None	

NOTES:

- 1) This function is only available for text modes.
- 2) The height of character and display cell are all 16 bytes (scanlines).
- 3) In VGA, the character font is loaded into RAM Map 2 (0 base), which can contain up to eight fonts at any time and is only available for the Character Generator. Consequently, the block value specified in register BL is ranged from 00h (default) to 07h.
- 4) Two out of eight character fonts can be used at any time. This provides 512 simultaneously displayable characters, instead of 256 characters. The way to display two different fonts at one time is described in the procedure below.
 - a) Load fonts into desired blocks.
 - b) Subfunction 03h (Select Block Specifier) of Function 11h is called to select two different font blocks out of eight font blocks; one for primary font, the other for secondary font.
 - c) Bit 3 of Attribute Byte serves as the Font Block Selector and foreground intensity for the character.

Bit 3 = 0 — Primary font selected and normal display (eight foreground colors) if Subfunction 00h of Function 10h is called with BX = 0712h.

Bit 3 = 1 — Secondary font selected and normal display (eight foreground colors)

else

Bit 3 = 1 — Secondary font selected and intensity display (16 foreground colors)

- 5) Default setting by BIOS loads a font into Block 0, which is used for both primary font and secondary font (256 displayable characters).
- 6) Subfunction 14h is almost identical to Subfunction 04h except the following differences:
 - a) Page 00h must be active.
 - b) Character Height = 16.
 - c) Number of rows (0 base) are recalculated as:

(Scanlines-per-screen/Character Height) minus 1.

d) The length of display buffer(1 base) is recalculated as

(Total number of rows X Number of columns) X 2.

- e) The CRTC registers are reprogrammed as follows:
- **Register Name** Index Change 09h Maximum scanlines 15 (0Fh) 0Ah Cursor Start 14 (0Eh) 0Bh Cursor End 15 (0Fh) 12h Vertical Display Enable End (Rows/screen.6) - 1 **Underline Location** 14h 15 (0Fh) (mode 07h only) It must be called immediately after Function 00h g)
- g) It must be called immediately after Function 00h call (set Video mode) or the result is unpredictable.

Subfunction: 20h — Set Pointer of User's Graphics Font Table to INT 1Fh

Input:	AH =	11h
	AL =	20h (Subfunction)
	ES: BP =	Points to the user's graphics font table
Output:	None	

- 1) The value in this Interrupt Vector serves as a pointer that points to Graphics Font for character codes (80h–FFh) in modes 04h, 05h, and 06h.
- In the CGA adapter, the planar BIOS only provides 128 character codes (00h– 7Fh). The user can supply the other half of character codes (80h–FFh), or use GRAFTABL in DOS to load these character codes.
- 3) This function must be called immediately after setting Video mode.

Subfunction: 21h — Set Pointer of User's Graphics Font Table to INT 43h

- Input:
- AH = 11h
- AL = 21h (Subfunction)
- BL = Character rows specifier

00h = Value in register DL (the number of displayable rows specified by user)

01h = 14 (0Eh) character rows

02h = 25 (19h) character rows

03h = 43 (2Bh) character rows

CX = Bytes per character

DL = Number of character rows (if register BL = 00h)

ES: BP = Points to the user's graphics font table

Output: None

- The value in this Interrupt Vector serves as a pointer that points to Graphics Font for character codes (00h–7fh) in modes 04h, 05h, and 06h. The vector also handles Graphics Font for character codes (00h–FFh) in all other graphics modes.
- 2) This function should only be called immediately after setting Video mode.
- 3) The portion of character rows above displayable rows are not displayed unless it is scrolled up.
- 4) The overlapping screen may occur on video modes that use all Display Memory addresses, such as mode 13h.

Subfunction: 22h — Set Pointer of ROM 8x14 Graphics Font Table to INT 43h

Input:	AH = AL = BL =	 11h 22h (Subfunction) The specifier of character rows on screen 00h = Value in register DL (the number of displayable rows specified by user) 01h = 14 (0Eh) character rows 02h = 25 (19h) character rows 03h = 43 (2Bh) character rows
Output:	DL = None	Number of character rows to display (if register BL = 00h)

- 1) This actually sets the pointer of an 8 x 16 font table.
- 2) The value in this Interrupt Vector serves as a pointer that points to Graphics Font for character codes (00h–7fh) in modes 04h, 05h, and 06h. The vector also handles Graphics Font for character codes (00h–FFh) in all other graphics modes.
- 3) This function should only be called immediately after setting Video mode.
- 4) The portion of character rows above displayable rows are not displayed unless it is scrolled up.
- 5) The overlapping screen may occur on video modes that use all Display Memory addresses, such as mode 13h.

Subfunction: 23h — Set Pointer of ROM 8 x 8 Graphics Font Table to INT 43h

Input:	AH = AL = BL =	 11h 23h (Subfunction) Specifier of character rows on screen 00h = Value in register DL (the number of displayable rows specified by user) 01h = 14 (0Eh) character rows 02h = 25 (19h) character rows 03h = 43 (2Bh) character rows
Output:	DL = None	Number of character rows to display (if register BL = 00h)

- The value in this Interrupt Vector serves as a pointer that points to Graphics Font for character codes (00h–7Fh) in modes 04h, 05h, and 06h. The vector also handles Graphics Font for character codes (00h–FFh) in all other graphics modes.
- 2) This function should only be called immediately after setting Video mode.
- 3) The portion of character rows above displayable rows are not displayed unless it is scrolled up.
- 4) The overlapping screen may occur on video modes that use all Display Memory addresses, such as mode 13h.

Subfunction: 24h — Set Pointer of ROM 8 x 16 Graphics Font Table to INT 43h

Input:	AH = AL = BL =	 11h 24h (Subfunction) Specifier of character rows on screen 00h = Value in register DL (the number of displayable rows specified by user) 01h = 14 (0Eh) character rows 02h = 25 (19h) character rows 03h = 43 (2Bh) character rows
Output:	DL = None	Number of character rows to display (if register BL = 00h)

NOTES:

- The value in this Interrupt Vector serves as a pointer that points to Graphics Font for character codes (00h–7fh) in modes 04h, 05h, and 06h. The vector also handles Graphics Font for character codes (00h–FFh) in all other graphics modes.
- 2) This function should only be called immediately after setting Video mode.
- 3) The portion of character rows above displayable rows are not displayed unless it is scrolled up.
- 4) The overlapping screen may occur on video modes that use all Display Memory addresses, such as mode 13h.

Subfunction: 30h — Get Pointer Information of Fonts

Input:	AH = AL = BH =	11h 30h (Subfunction) Pointer information of fonts 00h–Current Font Pointer stored in Interrupt Vector 1Fh
		01h–Current Font Pointer stored in Interrupt Vector 43h 02h–Font Pointer of ROM 8 X 16 Font Table 03h–Font Pointer of ROM 8 X 8 Font Table
		(Character Codes 00h–7fh)
		04h–Font Pointer of ROM 8 X 8 Font Table
		(Character Codes 80h–FFh)
		05h–Font Pointer of ROM 8 X 16 Alternate Font Table
		06h–Font Pointer of ROM 8 X 16 Font Table
Output:	CX =	07h–Font Pointer of ROM 9 X 16 Alternate Font Table Current character height (bytes per character)
Output:	DL =	Number of rows of current video mode (0 base) Points to information of desired font

5.2.2.19 Function: 12h - Alternate Select (Subfunctions)

Subfunction: 10h — Get Current Video Configuration

Input:	AH =	12h		
	BL =	10h (Subfunction)		
Output:	BH =	00h–Color mode (3Dx)		
		01h-Monochrome mode (3Bx	()	
	BL =	Video Memory Size	,	
		00h = N/A		
		01h = N/A		
		02h = N/A		
		03h = 256 Kbytes		
	CH=	Feature Bits		
	-			
Feature Con	trol Output	Input Status	Bit Setting (Register 3C2h)	
0	•	0	bit 5	
_			••••	
0		0	bit 5	
0 1		0	bit 5 bit 6	
0 1 2		0 0 1	bit 5 bit 6 bit 5	
0 1 2 3 4–7		0 0 1 1	bit 5 bit 6 bit 5 bit 6	
0 1 2 3 4–7 CL=Switch S		0 0 1 1 Description	bit 5 bit 6 bit 5 bit 6	
0 1 2 3 4–7 CL=Switch S bit 0		0 0 1 1 Description Configuration Switch-1	bit 5 bit 6 bit 5 bit 6	
0 1 2 3 4–7 CL=Switch S		0 0 1 1 Description	bit 5 bit 6 bit 5 bit 6	

bit 3	Configuration Sw	itch-4

bit 4–bit 7 Reserved

NOTES:

1) This function is valid for backwards compatibility in EGA mode only.

Subfunction: 20h — Alternate PrintScreen Handler

Input:	AH =	12h
	BL =	20h (Subfunction)
Output:	None	

NOTES:

 This function call replaces original PrintScreen Interrupt Handler (INT 05h) to support the modes whose displayable rows on screen are over 25 rows.

Subfunction: 30h — Select Scanlines for Text Modes

Input:	AH =	12h
	BL =	30h (Subfunction)
	AL =	Specifier of scanlines
		00h = 200 scanlines
		01h = 350 scanlines
		02h = 400 scanlines
Output:	AL =	12h (function supported)

NOTES:

- 1) The selected scanlines will take effect on next mode setting.
- 2) Mode 07h is only supported by 350/400 scanlines. Modes 00h–03h are supported by three scanlines.
- 3) The modes, 200 scanlines, are double scanned.

Subfunction: 31h — Enable/Disable Default Palette Loading

Input:	AH =	12h
	BL =	31h (Subfunction)
	AL =	00h–Enable default palette loading
		01h–Disable default palette loading
Output:	AL =	12h (function supported)

NOTES:

- 1) This function will take effect on next mode setting.
- 2) All Internal/External Palette registers are affected.

Subfunction: 32h — Enable/Disable Video

Input:	AH =	12h
	BL =	32h (Subfunction)
	AL =	00h–Enable Video
		01h–Disable Video
Output:	AL =	12h (function supported)

NOTES:

1) Video subsystem does not respond to any I/O or Video Memory Addressing.

Subfunction: 33h — Enable/Disable Summing-to-Grayshades

Input:	AH =	12h
	BL =	33h (Subfunction)
	AL =	00h–Enable summing-to-grayshades
		01h–Disable summing-to-grayshades
Output:	AL =	12h (function supported)

NOTES:

1) This function will take effect on a subsequent mode setting or internal/external palette setting.

Subfunction: 34h — Enable/Disable Cursor Emulation

Input:	AH =	12h
	BL =	34h (Subfunction)
	AL =	00h–Enable cursor emulation
		01h–Disable cursor emulation
Output:	AL =	12h (function supported)

- 1) This function will take effect on a subsequent mode setting or Function 01h call (set cursor type).
- 2) Bit 0 of Address [40:87] Emulation Flag is affected.

Subfunction: 35h — Switch Video Display

Input:	AH =	12h
	BL =	35h (Subfunction)
	AL =	00h–Initial video adapter turned off
		(ES:DX must point to a 128-byte
		buffer for switching state save area)
		01h–System board video turned on
		02h–Active video turned off (ES:DX must
		point to a buffer for switching state save area)
		03h–Inactive video turned on (ES:DX must point
		to a buffer which saves switching state previously)
	ES:DX =	Buffer for switching state (valid when AL = 00h, 02h, or 03h)
Output:	AL =	12h (function supported)

- 1) There are several requirements that have to be met before using this function. These requirements are:
 - a) Two video subsystems coexisting: system board video and video adapter.
 - b) The two video systems have a conflict over the use of video resources.
 - c) Video adapter is primary video; system board is secondary video.
 - d) This function must be supported by system board video and video adapter.
- If the first time switching from video adapter to system board video: Call the function with register AL = 00h Call the function with register AL = 01h else Call the function with register AL = 02h Call the function with register AL = 03h

Subfunction: 36h — Enable/Disable Screen Display

/
у

NOTES:

1) This function can be used for fast video memory updating without losing synchronization.

5.2.2.20	Functi	tion: 13h - Write Teletype String	
	Input:	AH =	13h
		AL =	Write function specifier
			00h–Write character string without updating
			cursor (BL = Attribute)
			01h–Write character string with updating cursor (BL = Attribute)
			02h–Write character/attribute string without updating cursor
			03h–Write character/attribute string with updating cursor
		BH =	Display page (0 base)
		BL =	Attribute (valid when AL = 00h or 01h)
		CX =	String length
		Dh =	Start Y coordinate of string displayed on screen
		DL =	Start X coordinate of string displayed on screen
		ES: BP =	 Start address of string (in Segment: Offset Format)
	Output:	None	
	NOTES:		

- 1) Control Characters: LF, CR, Backspace, and BELL are recognized. (ASCII Codes: LF = 0Ah, CR = 0Dh, Backspace = 08h, BELL = 07h).
- 2) String can be written to any page regardless of active state.
- 3) Line wrapping and screen scrolling are supported. Screen scrolling is only supported on active page.
- 4) The color value in register BL will do X'OR with the content of display memory, if bit 7 of the register is set in graphics modes.

5.2.2.21 Function: 1Ah - Get/Set Display Combination Code

Subfunction: 00h — Get Display Combination Code (DCC)

Input:	AH =	1Ah
	AL =	00h (Subfunction)
Output:	If functior	n supported:
	AL =	1Ah
	BH =	Alternate display code
	BL =	Active display code

NOTES:

1) Display Combination Code Definition:

Code	Definition
00h	No Display
01h	N/A
02h	N/A
03h	Reserved
04h	N/A
05h	N/A
06h	N/A
07h	Video Graphics Array with Analog Monochrome Monitor
	(MVGA)
08h	Video Graphics Array with Analog Color Monitor (VGA)

2) The user is responsible for providing the correct DCC. There is no physical device checking.

Subfunction: 01h — Set Display Combination Code (DCC)

Input:	AH =	1Ah
	AL =	01h (Subfunction)
	BH =	Alternate display code
	BL =	Active display code
Output:	If functior	n supported:
-	AL =	1Ah

NOTES:

1) Display Combination Code Definition:

Code	Definition
00h	No Display
01h	N/A
02h	N/A
03h	Reserved
04h	N/A
05h	N/A
06h	N/A
07h	Video Graphics Array with Analog Monochrome Monitor (MVGA)
08h	Video Graphics Array with Analog Color Monitor (VGA)

2) The user is responsible for providing the correct DCC. There is no physical device checking.

BIOS Specifications

5.2.2.22	Functi Input:	on: 1Bh - Colle AH = 1Bh BX = 00h ES: DI = Poin	ection of Video ts to 128-byte b	
	Output:	If function sup AL = 1Bh	ported:	
	NOTES:			
		1) Video info	ormation in 128-	-byte buffer:
		Offset	Size	Definition
		00h	2 Words	Pointer points to collection of static functionality information
		04h	Byte	Current Video mode
		05h	Word	Number of columns (1 base)
		07h	Word	Refresh Buffer Length (unit: byte)
		09h	Word	The starting address of Refresh Buffer (Offset value relates to start of video memory default = 0000h)
		0Bh	8 Words	Cursor Position for each page (maximum eight pages supported)
		1Bh	Word	Current Cursor Type (High Byte = start scanline, Low Byte = end scanline)
		1Dh	Byte	Active Video Page
		1Eh	Word	Base Port Address of CRT Controller (CRTC) (Monochrome = 3Bxh, Color = 3Dxh)
		20h	Byte	Current setting of 3B8h or 3D8h (Mode Control register)
		21h	Byte	Current setting of 3B9h or 3D9h
		22h	Byte	Number of rows (1 base)
		23h	Word	Character Height (1 base; unit: scanline
		25h	Byte	Active Display Code
		26h	Byte	Alternate Display Code
		27h	Word	Number of displayable colors (1 base monochrome = 0000h)
		29h	Byte	Number of Pages (1 base)
		2Ah	Byte	Specifier of vertical resolution 00h = 200 scanlines 01h = 350 scanlines 02h = 400 scanlines

BIOS Specifications

			480 scanlines Fh = Reserved
2Bh	Byte	Primar	y Font Block (00h–07h)
2Ch	Byte	Secon	dary Font Block (00h–07h)
2Dh	Byte	Flags o	of Video State:
		Bit	Definition
		7-6	Reserved
			0 = Background intensity
			1 = Blinking (Default)
		4	0 = Cursor Emulation Disable
			1 = Cursor Emulation Enable
		3	0 = Default Palette
			Loading Enable
			1 = Default Palette Loading
		_	Disable
		2	0 = Color Monitor Attached
			1 = Monochrome Monitor
			Attached
		1	0 = Summing-to-grayshades
			Disable
			1 = Summing-to-grayshades Enable
		0	
		0	1 = All modes are active
2E–30h		Reserv	on all displays
31h	Byte		er of total video RAM
5111	Dyte	00h = 1	
		01h = I	
		02h = 1	
		-	256 Kbytes
			Fh = Reserved
32h	Byte	Save p	ointer state information:
			Definition
		7-6	Reserved
		5	1 = Extension of Display
			Combination
			Code Active
		4	1 = Palette Override Active
		3	1 = Graphics Font
			Override Active
		2	1 = Alpha Font Override Active

			1	1 = Dynamic Save Area Active	
			0	1 = 512-character Set Active	
	-3Fh		Reserv	ved	
2	Collection	of static func	tionality info	ormation:	
	Offset	Size	Definit	tion	
	00h	Byte	Availat	ble video modes	
		-	if bit set:		
			Bit	Video Mode	
			0	00h	
			1	01h	
			2	02h	
			3	03h	
			4	04h	
			5	05h	
			6	06h	
			7	07h	
	01h	Byte		ble video modes if bit set:	
			Bit	Video Mode	
			0	08h	
			1	09h	
			2	0Ah	
			3	0Bh	
			4	0Ch	
			5	0Dh	
			6 7	0Eh	
	026	Duto		0Fh	
	02h	Byte	Bit	ble video modes if bit set: Video Mode	
			В ІІ 0	10h	
			1	11h	
			2	12h	
			2	13h	
			3 4–7	Reserved	
	03–06h	Reserved		i tesei veu	
	03–0011 07h		Number of	scanlines available in text modes:	
	0/11	Dyte		nction 30h, Function 12h)	
			Bit	Scanlines (if bit = 1)	
			0	200	
			1	350	
			2	400	
			<u>-</u> 3–7	Reserved	
	08h	Byte		er of active character blocks	
		,		ble in text modes	
	09h	Byte		um number of character	
	0311	Dyte			
			DIOCKS	available in text modes	

0Ah Byte	Suppo	orted functions (No. 1):		
-	Bit	Function (if bit = 1)		
	0	All modes on All Displays		
	1	Summing to grayshades		
	2	Character fonts Loading		
	3	Default Palette Loading		
	4	Cursor Emulation		
	5	EGA Palettes (Internal Palettes)		
	6	Color Palettes (External Pal-		
		ettes/RAMDAC)		
	7	Color Paging		
0Bh Byte	Supported functions (No. 2):			
	Bit	Function (if bit = 1)		
	0	Reserved		
	1	Save/Restore Video State		
	2	Background Intensity/Blinking		
		Control		
	3	Set Display Combination Code		
	4–7	Reserved		
0C–0Dh Reserved				
0Eh	Save	Save Pointer Functions:		
	Bit	Function (if bit = 1)		
	0	512-character Set		
	1	Dynamic Save Area		
	2	Alpha Font Override		
	3	Graphics Font Override		
	4	Palette Override		
	5	Extension of Display Combina-		
		tion Code		
	6–7	Reserved		
0Fh Reserved				

5.2.2.23 Function: 1Ch - Video State Information

Subfunction: 00h — Get Buffer Size for Video State

Input: AH = 1Ch AL = 00h (Subfunction) CX = Requested Video State: Bit Video State 0 Hardware State 1 **BIOS Data Area** 2 Color registers (External Palettes/RAMDAC) 3–15 Reserved

Output: If function supported:

- AL = 1Ch
- BX = Blocks/Buffer (Unit: 64 Byte/Block)

NOTES:

1) This function will report the required size of buffer to save video state. To guarantee Subfunction 01h and 02h are performed successfully, call this subfunction first.

Subfunction: 01h — Saving Video State

Input:	AH = AL = CX = ES:BX =			
Output:	AL =	ion supported: 1Ch < = State information saved in a user-supplied buffer		
Subfunction: 02h — Restore Video State				
Input:	AH = AL = CX =	02h (Subfunction)		

BIOS Data Area

Reserved

Color registers (External Palettes/RAMDAC)

ES: BX = Points to a previously saved buffer (Segment: Offset format)

1

2 3–15

If function supported:

1Ch

AL =

Output:

5.3 VESA VBE BIOS Functions

5.3.1 Overview

The VESA VBE 2.0 standard defines a set of functions used to obtain information about the capabilities of a specific Super VGA implementation. Additionally, these functions control hardware while initializing the video mode and accessing the video memory. They are intended as extensions of the VGA BIOS video services and are accessed through interrupt 10h.

For more information about the VESA standard, contact VESA at the address below.

Video Electronics Standards Association 920 Hillview Court Suite 140, Milpitas, CA 95035 TEL: (408) 435-0333 FAX:(408) 435-8225

Silicon Magic's SM3110 VESA BIOS extensions are VESA/VBE 2.0 compliant.

5.3.2 DDC Implementation

The SM3110 BIOS supports the DDC2B display type, as specified in paragraph 2.4.2 of the VESA DDC Standard version 1.0 revision 0. Also, the SM3110 BIOS implements a Host System Type of DDC2B, which is specified in paragraph 2.5.4 of the VESA DDC Standard version 1.0 revision 0. During DDC implementation, the following functions are integrated into the SM3110 BIOS:

- The data is transmitted and received on the DDC2 bi-directional data channel based on the I²C protocol.
- The BIOS does NOT implement the ACCESS bus protocol.
- The host requests EDID information and returns it to the application.
- The BIOS supports configurations two and five in Appendix A of the VESA DDC specification.

5.3.2.1 VBE Mode Numbers

Standard VGA mode numbers are 7 bits wide and presently range from 00h to 13h. OEMs have defined extended display modes in the range 14h to 7Fh. Values from 80h to FFh cannot be used, since VGA BIOS Function 00h (Set Video mode) interprets bit 7 as a flag to clear or preserve display memory.

Due to the limitations of 7-bit mode numbers, the optional VBE mode numbers are 14 bits wide. To initialize a VBE mode, the mode number is passed in the BX register to VBE Function 02h (Set VBE mode).

The format of VBE mode numbers is as follows:

D0-D8=	Mode number
	If D8 == 0, this is not a VESA-defined mode
	If D8 == 1, this is a VESA-defined mode
D9-D13=	Reserved by VESA for future expansion (= 0)
D14 =	Linear/Flat Frame Buffer Select
	If D14 == 0, Use VGA Frame Buffer
	If D14 == 1, Use Linear/Flat Frame Buffer
D15=	Preserve Display Memory Select
	If D15 == 0, Clear display memory
	If D14 == 1, Preserve display memory

Thus, VBE mode numbers begin at 100h. This mode numbering scheme implements standard 7bit mode numbers for OEM-defined modes. Standard VGA modes may be initialized through VBE Function 02h (Set VBE mode) simply by placing the mode number in BL and clearing the upper byte (BH). 7-bit OEM-defined display modes may be initialized in the same way. Note that modes may only be set if the mode exists in the Video Mode List returned in Function 0.

NOTE: Starting with VBE version 2.0, VESA will no longer define new VESA mode numbers and it will no longer be mandatory to support these old mode numbers. However, it is highly recommended that BIOS implementations continue to support these mode numbers for compatibility with older software.

5.3.2.2 VBE Functions Call

This section describes in detail each of the functions defined by the VBE standard. VBE functions are called using the INT 10h interrupt vector, passing arguments in the 80X86 registers. The INT 10h interrupt handler first determines if a VBE function was requested, and if so, processes that request. Otherwise, control is passed to the standard VGA BIOS for completion.

All VBE functions are called with the AH register set to 4Fh to distinguish them from the standard VGA BIOS functions. The AL register is used to indicate which VBE function is to be performed. For supplemental or extended functionality, the BL register is used when appropriate to indicate a specific subfunction.

Functions 00h-0Fh have been reserved for Standard VBE function numbers; Functions 10h- FFh are reserved for VBE Supplemental Specifications.

5.3.2.3 VBE Return Status

The AX register is used to indicate the completion status upon return from VBE functions. If VBE support for the specified function is available, the 4Fh value passed in the AH register on entry is returned in the AL register. If the VBE function completed successfully, 00h is returned in the AH register. Otherwise, the AH register is set to indicate the nature of the failure.

VBE RETURN STATUS

AL ==	4Fh:	Function is supported
AL !=	4Fh:	Function is not supported
AH ==	00h:	Function call successful
AH ==	01h:	Function call failed
AH ==	02h:	Function is not supported in the current hardware configuration
AH ==	03h:	Function call invalid in current video mode

NOTE: Applications should treat any non-zero value in the AH register as a general failure condition as later versions of the VBE may define additional error codes.

5.3.3 VESA BIOS Extended Functions (4Fh)

The sections below list the VESA/VBE functions and their descriptions.

5.3.3.1 Subfunction: 00h - Return VBE Controller Information

This required function returns the capabilities of the display controller, the revision level of the VBE implementation, and vendor specific information to assist in supporting all display controllers in the field.

The purpose of this function is to provide information to the calling program about the general capabilities of the installed the VBE software and hardware. This function fills an information block structure at the address specified by the caller. The VbeInfoBlock information block size is 256 bytes for VBE 1.x, and 512 bytes for VBE 2.0.

Input:	AH AL ES:DI	= 4Fh = 00h =	Return VBE Controller Information Pointer to buffer in which to place VbeInfoBlock struc- ture (VbeSignature should be set to 'VBE2' when function is called to indicate VBE 2.0 information is desired and the information block is 512 bytes in size.)
Output:	AX	=	VBE Return Status

All other registers are preserved.

The information block has the following structure:

VbeInfoBlock struc VbeSignature	db	'VESA'	; VBE Signature
VbeVersion	dw	0200h	; VBE Version
OemStringPtr	dd	?	; Pointer to OEM String
Capabilities	db	4 dup (?)	; Capabilities of graphics controller
VideoModePtr	dd	?	; Pointer to Video Mode List
TotalMemory	dw	?	; Number of 64 Kbytes memory blocks
			; added for VBE 2.0
OemSoftwareRev	dw	?	; VBE implementation Software Rev.
OemVendorNamePtr	dd	?	; Pointer to Vendor Name String
OemProductNamePtr	dd	?	; Pointer to Product Name String
OemProductRevPtr	dd	?	; Pointer to Product Revision String
Reserved	db	222 dup (?)	; Reserved for VBE implementation
			: scratch area
OemData	db	256 dup (?)	; Data Area for OEM Strings
VbeInfoBlock ends			

NOTE: All data in this structure is subject to change by the VBE implementation when VBE Function 00h is called. Therefore, it should not be used by the application to store data of any kind.

BIOS Specifications

Description of the VbeInfoBlock Structure Fields

The **VbeSignature** field is filled with the ASCII characters 'VESA' by the VBE implementation. VBE 2.0 applications should preset this field with the ASCII characters 'VBE2' to indicate to the VBE implementation that the VBE 2.0 extended information is desired, and the VbeInfoBlock is 512 bytes in size. Upon return from VBE Function 00h, this field should always be set to 'VESA' by the VBE implementation.

The **VbeVersion** is a BCD value which specifies what level of the VBE standard is implemented in the software. The higher byte specifies the major version number. The lower byte specifies the minor version number.

NOTE: The BCD value for VBE 2.0 is 0200h, and the BCD value for VBE 1.2 is 0102h. In the past there have been some applications misinterpreting these BCD values. For example, BCD 0102h was interpreted as 1.02, which is incorrect.

The **OemStringPtr** is a Real Mode far pointer to a null terminated OEM-defined string. This string may be used to identify the graphics controller device or OEM product family for hardware specific display drivers. There are no restrictions on the format of the string. This pointer may point into either ROM or RAM, depending on the specific implementation. VBE 2.0 BIOS implementations must place this string in the OemData area within the VbeInfoBlock if 'VBE2' is preset in the Vbe-Signature field on entry to Function 00h. This makes it possible to convert the Real Mode address to an offset within the VbeInfoBlock for Protected mode applications.

NOTE: The length of the OEMString is not defined, but for space considerations, it is recommend that a string length of less than 256 bytes is used.

The **Capabilities** field indicates the support of specific features in the graphics environment. The bits are defined as follows:

D0	= 0	DAC is fixed width, with 6 bits per primary color
	= 1	DAC width is switchable to 8 bits per primary color
D1	= 0	Controller is VGA compatible
	= 1	Controller is not VGA compatible
D2	= 0	Normal RAMDAC operation
	= 1	When programming large blocks of information to the
		RAMDAC, use the blank bit in Function 09h.
D3-31	=	Reserved

NOTE: BIOS Implementation -The DAC must always be restored to 6 bits per primary as default upon a mode set. If the DAC was switched to 8 bits per primary, the mode set must restore the DAC to 6 bits per primary to ensure the application programmer that he does not have to reset it.

NOTE: Application Programmer -If a DAC is switchable, the programmer can assume that the DAC is restored to 6 bits per primary upon a mode set. For an application to use a DAC, the application program is responsible for setting the DAC to 8 bits per primary mode using Function 08h.

VGA compatibility is defined as supporting all standard IBM VGA modes, fonts and I/O ports. However, VGA compatibility does not guarantee that all modes which can be set are VGA compatible, or that the 8x14 font is available.

The need for D2 = 1 "program the RAMDAC using the blank bit in Function 09h" is for older style RAMDACs, where programming the RAM values during display time causes a "snow-like" effect on the screen. Newer style RAMDACs do not have this limitation and can easily be programmed at any time. Older RAMDACs require that they be blanked so as not to display the snow while values change during display time. This bit informs the software that it should make the function call with BL=80h, rather than BL=00h, to ensure the minimization of the "snow-like" effect.

The **VideoModePtr** points to a list of mode numbers for all display modes supported by the VBE implementation. Each mode number occupies one word (16 bits). The list of mode numbers is terminated by a -1 (0FFFFh). The mode numbers in this list represent all of the potentially supported modes by the display controller. VBE 2.0 BIOS implementations must place this mode list in the Reserved area of the VbeInfoBlock or have it statically stored within the VBE implementation if 'VBE2' is preset in the VbeSignature field on entry to Function 00h.

NOTE: It is the application's responsibility to verify the actual availability of any mode returned by this function through the Return VBE Mode Information (VBE Function 01h) call. Some of the returned modes may not be available due to the actual amount of memory physically installed on the display board, or due to the capabilities of the attached monitor.

If a **VideoModeList** is found to contain no entries (starts with 0FFFFh), it can be assumed that the VBE implementation is a "stub" implementation where only Function 00h is supported for diagnostic or "Plug and Play" reasons. These stub implementations are not VBE 2.0 compliant and should be implemented only in cases where no space is available to implement the entire VBE.

The **TotalMemory** field indicates the maximum amount of memory physically installed and available to the frame buffer in 64KB units (for example, 256KB = 4, 512KB = 8). Not all video modes can address all this memory, see the ModeInfoBlock for detailed information about the address-able memory for a given mode.

The **OemSoftwareRev** field is a BCD value which specifies the OEM revision level of the VBE software. The higher byte specifies the major version number. The lower byte specifies the minor version number. This field can be used to identify the OEM's VBE software release. This field is only filled in when 'VBE2' is preset in the VbeSignature field on entry to Function 00h.

The **OemVendorNamePtr** is a pointer to a null-terminated string containing the name of the vendor which produced the display controller board product. (This string may be contained in the VbeInfoBlock or the VBE implementation.) This field is only filled in when 'VBE2' is preset in the VbeSignature field on entry to Function 00h. (Note that the length of the strings OemProductRev, OemProductName and OemVendorName (including terminators) summed, must fit within a 256 byte buffer; this is to allow for return in the OemData field if necessary.)

The **OemProductNamePtr** is a pointer to a null-terminated string containing the product name of the display controller board (this string may be contained in the VbeInfoBlock or the VBE imple-

BIOS Specifications

mentation). This field is only filled in when 'VBE2' is preset in the VbeSignature field on entry to Function 00h (note that the length of the strings OemProductRev, OemProductName and OemV-endorName (including terminators) summed, must fit within a 256 byte buffer; this is to allow for return in the OemData field if necessary).

The **OemProductRevPtr** is a pointer to a null-terminated string containing the revision or manufacturing level of the display controller board product (this string may be contained in the VbeInfoBlock or the VBE implementation). This field can be used to determine which production revision of the display controller board is installed. This field is only filled in when 'VBE2' is preset in the VbeSignature field on entry to Function 00h (note that the length of the strings OemProductRev, OemProductName and OemVendorName (including terminators) summed, must fit within a 256byte buffer; this is to allow for return in the OemData field if necessary).

The **Reserved** field is a space reserved for dynamically building the VideoModeList, if necessary, if the VideoModeList is not statically stored within the VBE implementation. This field should not be used for anything else, and may be reassigned in the future. Application software should not assume that information in this field is valid.

The **OemData** field is a 256-byte data area that is used to return OEM information returned by VBE Function 00h when 'VBE2' is preset in the VbeSignature field. The OemVendorName string, OemProductName string and OemProductRev string are copied into this area by the VBE implementation. This area is only used by VBE implementations 2.0 and above when 'VBE2' is preset in the VbeSignature field.

5.3.3.2 Subfunction: 01h - Return VBE Mode Information

This required function returns extended information about a specific VBE display mode from the mode list returned by VBE Function 00h. This function fills the mode information block, Modeln-foBlock, structure with technical details on the requested mode. The ModelnfoBlock structure is provided by the application with a fixed size of 256 bytes.

Information can be obtained for all listed modes in the Video Mode List returned in Function 00h. If the requested mode cannot be used or is unavailable, a bit is set in the ModeAttributes field to indicate that the mode is not supported in the current configuration.

Input:	AH	= 4Fh	
	AL	= 01h	Return VBE mode information
	CX	=	Mode number
	ES:DI	=	Pointer to ModeInfoBlock structure
Output:	AX	=	VBE Return Status

All other registers are preserved.

The mode information block has the following structure:

ModeInfoBlock struc			; Mandatory information for all VBE ; revisions
ModeAttributes	dw	?	; Mode attributes
WinAAttributes	db	?	; Window A attributes
WinBAttributes	db	?	; Window B attributes
WinGranularity	dw	?	; Window granularity
WinSize	dw	?	; Window size
WinASegment	dw	?	; Window A start segment
WinBSegment	dw	?	; Window B start segment
WinFuncPtr	dd	?	; Pointer to window function
BytesPerScanLine		?	,
BytesPerScanLine	dw	<u>'</u>	; Bytes per scanline
			; Mandatory information for VBE 1.2
VD 1.4	1	0	; and above
XResolution	dw	?	; Horizontal resolution in pixels
			; or characters (pixels in
			; graphics modes,
			; characters in text modes.)
YResolution	dw	?	; Vertical resolution in pixels or
			; characters
XCharSize	db	?	; Character cell width in pixels
YCharSize	db	?	; Character cell height in pixels
NumberOfPlanes	db	?	; Number of memory planes
BitsPerPixel	db	?	; Bits-per-pixel
NumberOfBanks	db	?	; Number of banks
MemoryModel	db	?	; Memory model type
BankSize	db	?	; Bank size in Kbytes
NumberOfImagePages	db	?	; Number of images
Reserved	db	1	; Reserved for page function
			; Direct Color fields (required for direct/6
			; and YUV/7 memory models)
RedMaskSize	db	?	; Size of direct color red mask in
			; bits
RedFieldPosition	db	?	; Bit position of lsb of red mask
GreenMaskSize	db	?	; Size of direct color green mask
			; in bits
GreenFieldPosition	db	?	; Bit position of lsb of green
	uo	·	; mask
BlueMaskSize	db	?	; Size of direct color blue mask in
Didewidskölze	uo	÷	; bits
BlueFieldPosition	db	?	; Bit position of lsb of blue mask
RsvdMaskSize	db	?	; Size of direct color reserved
RSvulviaskSize	ub	ł	; mask in bits
DavdEigldDegition	dh	9	,
RsvdFieldPosition	db	?	; Bit position of lsb of reserved
Diment Calam Marta P	.11.	0	; mask
DirectColorModeInfo	db	?	; Direct color mode attributes
			; Mandatory information for VBE 2.0 and

			; above
PhysBasePtr	dd	?	; Physical address for flat
			; memory frame buffer
OffScreenMemOffset	dd	?	; Pointer to start off screen
			; memory
OffScreenMemSize	dw	?	; Amount of off screen memory in
			; 1k units
Reserved	db	206 dup (?)	; Remainder of ModeInfoBlock
			; ModeInfoBlock ends

The ModeAttributes field is defined as follows:

D0	=	Mode supported by hardware configuration				
		0 =	Mode not supported in hardware			
		1 =	Mode supported in hardware			
D1	=	1 (Reserv				
D2	=	TTY Out	but functions supported by BIOS			
		0 =	TTY Output functions not supported by BIOS			
		1 =	TTY Output functions supported by BIOS			
D3	=	Monochro	ome/color mode (see note below)			
		0 =	Monochrome mode			
		1 =	Color mode			
D4	=	Mode type				
		0 =	Text mode			
		1 =	Graphics mode			
D5	=	VGA com	ipatible mode			
		0 =	Yes			
		1 =	No			
D6	=	VGA com	patible windowed memory mode is available			
		0 =	Yes			
		1 =	No			
D7	=	Linear frame buffer mode is available				
		0 =	No			
		1 =	Yes			
D8-	D15 =	Reserved	1			

Bit D0 is set to indicate that this mode can be initialized in the present hardware configuration. This bit is reset to indicate the unavailability of a graphics mode if it requires a certain monitor type, more memory than is physically installed, and so on.

Bit D1 was used by VBE 1.0 and 1.1 to indicate that the optional information following the Bytes-PerScanLine field were present in the data structure. This information became mandatory with VBE version 1.2 and above, so D1 is no longer used and should be set to 1. The Direct Color fields are only valid if the MemoryModel field is set to a 6 (Direct Color) or 7 (YUV).

Bit D2 indicates whether the video BIOS has support for output functions like TTY output, scroll, and so on, in this mode. TTY support is recommended, but not required, for all extended text and graphic modes. If bit D2 is set to 1, then the INT 10h BIOS must support all of the standard output functions listed below.

01	Set Cursor Size
02	Set Cursor Position
06	Scroll TTY window up or Blank Window
07	Scroll TTY window down or Blank Window
09	Write character and attribute at cursor position
0A	Write character only at cursor position
0E	Write character and advance cursor

Bit D3 is set to indicate color modes, and cleared for monochrome modes.

Bit D4 is set to indicate graphics modes, and cleared for text modes.

NOTE: Monochrome modes map their CRTC address at 3B4h. Color modes map their CRTC address at 3D4h. Monochrome modes have attributes in which only bit 3 (video) and bit 4 (intensity) of the attribute controller output are significant. Therefore, monochrome text modes have attributes of off, video, high intensity, blink, and so on. Monochrome graphics modes are two plane graphics modes and have attributes of off, video, high intensity, and blink. Extended two color modes that have their CRTC address at 3D4h are color modes with one bit-per-pixel and one plane. The standard VGA modes 06h and 11h would be classified as color modes, while the standard VGA modes 07h and 0Fh would be classified as monochrome modes.

Bit D5 is used to indicate if the mode is compatible with the VGA hardware registers and I/ O ports. If this bit is set, then the mode is NOT VGA compatible and no assumptions should be made about the availability of any VGA registers. If clear, then the standard VGA I/O ports and frame buffer address, defined in WinASegment and/or WinBSegment can be assumed.

Bit D6 is used to indicate if the mode provides Windowing or Banking of the frame buffer into the frame buffer memory region specified by WinASegment and WinBSegment. If set, then Windowing of the frame buffer is NOT possible. If clear, then the device is capable of mapping the frame buffer into the segment specified in WinASegment and/or WinBSegment (this bit is used in conjunction with bit D7, see table following D7 for usage).

Bit D7 indicates the presence of a Linear Frame Buffer memory model. If this bit is set, the display controller can be put into a flat memory model by setting the mode (VBE Function 02h) with the Flat Memory Model bit set (this bit is used in conjunction with bit D6, see following table for usage).

Bit 7 and Bit 6 Usage

	D7	D6
Windowed frame buffer only	0	0
n/a	0	1
Both Windowed and Linear*		0
Linear frame buffer only	1	1

^{*}Use D14 of the Mode Number to select the Linear Buffer on mode set (Function 02h).

The **BytesPerScanLine** field specifies how many full bytes are in each logical scanline. The logical scanline could be equal to or larger than the displayed scanline.

The **WinAAttributes** and **WinBAttributes** describe the characteristics of the CPU windowing scheme such as whether the windows exist and are read/writable, as follows:

Relocatable window(s) supported
0 = Single non-relocatable window only
1 = Relocatable window(s) are supported
Window readable
0 = Window is not readable
1 = Window is readable
Window writable
0 = Window is not writable
1 = Window is writable
Reserved

Even if windowing is not supported (bit D0 = 0 for both Window A and Window B), then an application can assume that the display memory buffer resides at the location specified by WinASegment and/or WinBSegment.

WinGranularity specifies the smallest boundary, in Kbytes, on which the window can be placed in the frame buffer memory. The value of this field is undefined if Bit D0, of the appropriate WinAt-tributes field, is not set.

WinSize specifies the size of the window in Kbytes.

WinASegment and **WinBSegment** address specify the segment addresses where the windows are located in the CPU address space.

WinFuncPtr specifies the segment:offset of the VBE memory windowing function. The windowing function can be invoked either through VBE Function 05h, or by calling the function directly. A direct call will provide faster access to the hardware paging registers than using VBE Function 05h, and is intended to be used by high performance applications. If this field is NULL, then VBE Function 05h must be used to set the memory window when paging is supported. This direct call method uses the same parameters as VBE Function 05h, including AX, and for VBE 2.0 implementations will return the correct Return Status. VBE 1.2 implementations and earlier did not require the Return Status information to be returned. For more information on the direct call method, see the notes in VBE Function 05h.

The **XResolution** and **YResolution** specify the width and height in pixel elements or characters for this display mode. In graphics modes, these fields indicate the number of horizontal and vertical pixels that may be displayed. In text modes, these fields indicate the number of horizontal and vertical character positions. The number of pixel positions for text modes may be calculated by multiplying the returned XResolution and YResolution values by the character cell width and height indicated in the XCharSize and YCharSize fields described below.

The **XCharSize** and **YCharSize** specify the size of the character cell in pixels. This value is not zero based. For example, XCharSize for Mode 3, using the 9 point font, will have a value of 9.

The **NumberOfPlanes** field specifies the number of memory planes available to software in that mode. For standard 16-color VGA graphics, the field would be set to 4. For standard packed pixel modes, the field would be set to 1. For 256-color non-chain-4 modes, where the programmer needs to do banking to address all pixels, this value should be set to the number of banks required to get to all the pixels (typically this would be 4 or 8).

The **BitsPerPixel** field specifies the total number of bits allocated to one pixel. For example, a standard VGA 4 Plane 16-color graphics mode would have a 4 in this field and a packed pixel 256-color graphics mode would specify 8 in this field. The number of bits-per-pixel per plane can normally be derived by dividing the BitsPerPixel field by the NumberOfPlanes field.

The **MemoryModel** field specifies the general type of memory organization used in this mode. The following models have been defined:

00h	=	Text mode
01h	=	CGA graphics
02h	=	N/A
03h	=	Planar
04h	=	Packed pixel
05h	=	Non-chain 4, 256 colors
06h	=	Direct Color
07h	=	YUV
08h-0Fh	=	Reserved, to be defined by VESA
10h-FFh	=	To be defined by OEM

VBE Version 1.1 and earlier defined Direct Color graphics modes with pixel formats 1:5:5:5, 8:8:8, and 8:8:8:8 as a Packed Pixel model with 16, 24, and 32 bpp, respectively. In VBE Version 1.2 and later, the Direct Color modes use the Direct Color memory model and use the MaskSize and Field-Position fields of the ModeInfoBlock to describe the pixel format. BitsPerPixel is always defined to be the total memory size of the pixel, in bits.

NumberOfBanks. This is the number of banks in which the scanlines are grouped. The quotient from dividing the scanline number by the number of banks is the bank that contains the scanline and the remainder is the scanline number within the bank. For example, CGA graphics modes have two banks and Hercules graphics mode has four banks. For modes that do not have scanline banks (such as VGA modes 0Dh-13h), this field should be set to 1.

The **BankSize** field specifies the size of a bank (group of scanlines) in units of 1 Kbyte. For CGA and Hercules graphics modes this is 8, as each bank is 8192 bytes in length. For modes that do not have scanline banks (such as VGA modes 0Dh-13h), this field should be set to 0.

The **NumberOfImagePages** field specifies the "total number minus one (-1)" of complete display images that will fit into the frame buffer memory. The application may load more than one image into the frame buffer memory if this field is non-zero, and move the display window within each of those pages. This should be used only to determine the additional display pages that are available to the application. To determine the available off screen memory, use the OffScreenMemOffset and OffScreenMemSize information.

NOTE: If the **ModeInfoBlock** is for an IBM Standard VGA mode and the NumberOfImagePages field contains more pages than would be found in a 256 Kbytes implementation, the TTY support described in the ModeAttributes must be accurate. That is, if the TTY functions are claimed to be supported, they must be supported in all pages, not just the pages normally found in the 256 Kbytes implementation.

The **Reserved** field is defined to support a future VBE feature and will always be set to one in this version.

The **RedMaskSize**, **GreenMaskSize**, **BlueMaskSize**, and **RsvdMaskSize** fields define the size, in bits, of the red, green, and blue components of a direct color pixel. A bitmask can be constructed from the MaskSize fields using simple shift arithmetic. For example, the MaskSize values for a Direct Color 5:6:5 mode would be 5, 6, 5, and 0, for the red, green, blue, and reserved fields, respectively. Note that in the YUV MemoryModel, the red field is used for V, the green field is used for Y, and the blue field is used for U. The MaskSize fields should be set to 0 in modes using a memory model that does not have pixels with component fields.

The **RedFieldPosition**, **GreenFieldPosition**, **BlueFieldPosition**, and **RsvdFieldPosition** fields define the bit position within the direct color pixel or YUV pixel of the least significant bit of the respective color component. A color value can be aligned with its pixel field by shifting the value left by the FieldPosition. For example, the FieldPosition values for a Direct Color 5:6:5 mode would be 11, 5, 0, and 0, for the red, green, blue, and reserved fields, respectively. Note that in the YUV MemoryModel, the red field is used for V, the green field is used for Y, and the blue field is used for U. The FieldPosition fields should be set to 0 in modes using a memory model that does not have pixels with component fields.

The **DirectColorModeInfo** field describes important characteristics of direct color modes. Bit D0 specifies whether the color ramp of the DAC is fixed or programmable. If the color ramp is fixed, then it can not be changed. If the color ramp is programmable, it is assumed that the red, green, and blue lookup tables can be loaded by using VBE Function 09h. Bit D1 specifies whether the bits in the Rsvd field of the direct color pixel can be used by the application or are reserved, and thus unusable.

D0 :	=	Color ramp is fixed/programmable	
		0 =	Color ramp is fixed
		1 =	Color ramp is programmable
D1 :	=	Bits in R	svd field are usable/reserved
		0 =	Bits in Rsvd field are reserved
		1 =	Bits in Rsvd field are usable by the application

The **PhysBasePtr** is a 32-bit physical address of the start of frame buffer memory when the controller is in flat frame buffer memory mode. If this mode is not available, then this field is zero.

The **OffScreenMemOffset** is a 32-bit offset from the start of the frame buffer memory. Extra offscreen memory that is needed by the controller may be located either before or after this offscreen memory. The programmer should be sure to check OffScreenMemSize to determine the amount of off-screen memory which is available to the application.

The **OffScreenMemSize** contains the amount of available, contiguous off-screen memory in 1 Kbyte units which can be used by the application.

NOTE: VBE version 1.1 and later will zero out all unused fields in the Mode Information Block, always returning exactly 256 bytes. This facilitates upward compatibility with future versions of the standard, as any newly added fields are designed such that values of zero will indicate nominal defaults or non-implementation of optional features (for example, a field containing a bitmask of extended capabilities would reflect the absence of all such capabilities). Applications that wish to

be backwards compatible to VBE version 1.0 should pre-initialize the 256 byte buffer before calling the Return VBE Mode Information function.

5.3.3.3 Subfunction: 02h - Set VBE Mode

This required function initializes the controller and sets a VBE mode. The format of VESA VBE mode numbers is described earlier in this chapter. If the mode cannot be set, the BIOS should leave the graphics environment unchanged and return a failure error code.

del
el

All other registers are preserved.

If the requested mode number is not available the call will fail, returning AH=01h to indicate the failure to the application.

If bit D14 is set, the mode is initialized for use with a flat frame buffer model. The base address of the frame buffer can be determined from the extended mode information returned by VBE Function 01h. If D14 is set and a linear frame buffer model is not available, then the call will fail, returning AH=01h to the application.

If bit D15 is not set, all reported image pages based on Function 00h returned information NumberOfImagePages are cleared to 00h in graphics mode and 20 07 in text mode. Memory over and above the reported image pages are not changed. If bit D15 is set, then the contents of the frame buffer after the mode change is undefined. Note that the 1-byte mode numbers used in Function 00h of an IBM VGA compatible BIOS use D7 to signify the same thing as D15 does in this function. If D7 is set for an IBM compatible mode set using this Function, 02h, this mode set will fail. VBE aware applications must use the memory clear bit in D15.

NOTE: VBE BIOS 2.0 implementations should also update the BIOS Data Area 40:87 memory clear bit so that VBE Function 03h can return this flag. VBE BIOS 1.2 and earlier implementations ignore the memory clear bit.

NOTE: This call should not set modes not listed in the list of supported modes. In addition, all modes (including IBM standard VGA modes), if listed as supported, must have ModeInfoBlock structures associated with them.

5.3.3.4 Subfunction: 03h - Return current VBE Mode

This required function returns the current VBE mode. The format of VBE mode numbers is described earlier in this chapter.

Input:	AH	= 4Fh	
	AL	= 03h	Return current VBE mode
Output:	AX	=	VBE Return Status
	BX	=	Current VBE mode
	D0-D13	=	Mode number
	D14	= 0	Windowed frame buffer model
		= 1	Linear/flat frame buffer model
	D15	= 0	Memory cleared at last mode set
		= 1	Memory not cleared at last mode set

- 1) All other registers are preserved.
- 2) Version 1.x In a standard VGA BIOS, Function 0Fh (Read current video state) returns the current graphics mode in the AL register. In D7 of AL, it also returns the status of the memory clear bit (D7 of 40:87). This bit is set if the mode was set without clearing memory. In this VBE function, the memory clear bit are not returned in BX because the purpose of the function is only to return the video mode. If an application wants to obtain the memory clear bit, it should call the standard VGA BIOS Function 0Fh.
- Version 2.x Unlike version 1.x VBE implementations, the memory clear flag is returned. The application should NOT call the standard VGA BIOS Function 0Fh if the mode was set with VBE Function 02h.
- 4) The mode number returned must be the same mode number used in the VBE Function 02h mode set.
- 5) This function is not guaranteed to return an accurate mode value if the mode set was not done with VBE Function 02h.

5.3.3.5 Subfunction: 04h - Save/Restore State

This required function provides a complete mechanism to save and restore the display controller hardware state. The functions are a superset of the three subfunctions under the standard VGA BIOS Function 1Ch (Save/restore state) which does not guarantee that the extended registers of the video device are saved or restored. The complete hardware state (except frame buffer memory) should be saveable/restorable by setting the requested states mask (in the CX register) to 000Fh.

Input:	AH	= 4Fh	
•	AL	= 04h	Save/Restore State
	DL	= 00h	Return Save/Restore State buffer size
		= 01h	Save state
		= 02h	Restore state
	CX	=	Requested states
	D0	=	Save/Restore controller hardware state
	D1	=	Save/Restore BIOS data state
	D2	=	Save/Restore DAC state
	D3	=	Save/Restore Register state
ES:BX		=	Pointer to buffer (if DL <> 00h)
Output:	AX	=	VBE Return Status
·	BX	=	Number of 64-byte blocks to hold the state buffer (if DL=00h)

NOTES:

1) All other registers are preserved.

5.3.3.6 Subfunction: 05h - Display Window Control

This required function sets or gets the position of the specified display window or page in the frame buffer memory by adjusting the necessary hardware paging registers. To use this function properly, the software should first use VBE Function 01h (Return VBE Mode information) to determine the size, location and granularity of the windows.

For performance reasons, it may be more efficient to call this function directly, without incurring the INT 10h overhead. VBE Function 01h returns the segment:offset of this windowing function that may be called directly for this reason. Note that a different entry point may be returned based upon the selected mode. Therefore, it is necessary to retrieve this segment:offset specifically for each desired mode.

Input:	AH	= 4Fh	
	AL	= 05h	VBE Display Window Control
	BH	= 00h	Set memory window
		= 01h	Get memory window
	BL	=	Window number
		= 00h	Window A
		= 01h	Window B
	DX	=	Window number in video memory in
			window granularity units (Set Memory
			Window only)
Output:	AX	=	VBE Return Status
	DX	=	Window number in window granularity
			units (Get Memory Window only)

- In VBE 1.2 implementations, the direct far call version returns no Return Status information to the application. Also, in the far call version, the AX and DX registers is destroyed. Therefore, if AX and/or DX must be preserved, the application must do so prior to making the far call. The application must still load the input arguments in BH, BL, and DX (for Set Window). In VBE 2.0 implementations, the BIOS will return the correct Return Status, and therefore the application must assume that AX and DX are destroyed.
- Application Programmers This function is not intended for use in a linear frame buffer mode. If this function is requested, the function call will fail with the VBE Completion code AH=03h.
- VBE BIOS Implementation If this function is called while in a linear frame buffer memory model, this function must fail with completion code AH=03h.

5.3.3.7 Subfunction: 06h - Set/Get Logical Scanline Length

This required function sets or gets the length of a logical scanline. This allows an application to set up a logical display memory buffer that is wider than the displayed area. VBE Function 07h (Set/ Get Display Start) then allows the application to set the starting position that is to be displayed.

Input:	AH	= 4Fh	
	AL	= 06h	VBE Set/Get Logical Scanline Length
	BL	= 00h	Set Scanline Length in Pixels
		= 01h	Get Scanline Length
		= 02h	Set Scanline Length in Bytes
		= 03h	Get Maximum Scanline Length
	CX	=	If BL=00h Desired Width in Pixels
			If BL=02h Desired Width in Bytes
			(Ignored for Get Functions)
Output:	AX	=	VBE Return Status
	BX	=	Bytes Per Scanline
	CX	=	Actual Pixels Per Scanline
			(truncated to nearest complete pixel)
	DX	=	Maximum Number of Scanlines

- 1) The desired width in pixels or bytes may not be achievable because of hardware considerations. The next larger value is selected that will accommodate the desired number of pixels or bytes, and the actual number of pixels is returned in CX. BX returns a value that, when added to a pointer into display memory will point to the next scanline. For example, in VGA mode 13h this would be 320, but in mode 12h this would be 80. DX returns the number of logical scanlines based upon the new scanline length and the total memory installed and usable in this display mode.
- 2) This function is also valid in VBE supported text modes. In VBE supported text modes the application should convert the character line length to pixel line length by getting the current character cell width through the XCharSize field returned in ModeInfoBlock, multiplying that times the desired number of characters per line and passing that value in the CX register. In addition, this function will only work if the line length is specified in character granularity. That is, only in 8 dot modes will multiples of 8 work. Any value which is not in character granularity will result in a function call failure.
- 3) On a failure to set scanline length by setting a CX value too large, the function will fail with error code 02h.
- 4) The value returned when BL=03h is the lesser of either the maximum line length that the hardware can support, or the longest scanline length that would support the number of lines in the current video mode.

5.3.3.8 Subfunction: 07h - Set/Get Display Start

This required function selects the pixel to be displayed in the upper left corner of the display. This function can be used to pan and scroll around logical screens that are larger than the displayed screen. This function can also be used to rapidly switch between two different displayed screens for double buffered animation effects.

Input:	AH	= 4Fh	
	AL	= 07h	VBE Set/Get Display Start Control
	BH	= 00h	Reserved and must be 00h
	BL	= 00h	Set Display Start
		= 01h	Get Display Start
		= 80h	Set Display Start during Vertical Retrace
	CX	=	First Displayed Pixel In Scanline
			(Set Display Start only)
	DX	=	First Displayed Scanline
			(Set Display Start only)
Output:	AX	=	VBE Return Status
	BH	=	00h Reserved and is 0
			(Get Display Start only)
	CX	=	First Displayed Pixel In Scanline
			(Get Display Start only)
	DX	=	First Displayed Scanline
			(Get Display Start only)

NOTES:

This function is also valid in text modes. To use this function in text mode, the application should convert the character coordinates to pixel coordinates by using XCharSize and YCharSize returned in the ModeInfoBlock. If the requested Display Start coordinates do not allow for a full page of video memory or the hardware does not support memory wrapping, the Function call should fail and no changes should be made. As a general case, if a requested Display Start is not available, fail the Function call and make no changes.

5.3.3.9 Subfunction: 08h - Set/Get DAC Palette Format

This required function manipulates the operating mode or format of the DAC palette. Some DACs are configurable to provide 6 bits, 8 bits, or more of color definition per red, green, and blue primary colors. The DAC palette width is assumed to be reset to the standard VGA value of 6 bits per primary color during any mode set.

Input:	AH	= 4Fh	
	AL	= 08h	VBE Set/Get Palette Format
	BL	= 00h	Set DAC Palette Format
		= 01h	Get DAC Palette Format
	BH	=	Desired bits of color per primary
			(Set DAC Palette Format only)
Output:	AX	=	VBE Return Status
	BH	=	Current number of bits of color per primary

An application can determine if DAC switching is available by querying Bit D0 of the Capabilities field of the VbeInfoBlock structure returned by VBE Function 00h (Return Controller Information). The application can then attempt to set the DAC palette width to the desired value. If the display controller hardware is not capable of selecting the requested palette width, then the next lower value that the hardware is capable of is selected. The resulting palette width is returned.

This function will return failure code AH=03h if called in a direct color or YUV mode.

5.3.3.10 Subfunction: 09h - Set/Get Palette Data

This required function is very important for RAMDACs which are larger than a standard VGA RAM-DAC. The standard INT 10h BIOS Palette function calls assume standard VGA ports and VGA palette widths. This function offers a palette interface that is independent of the VGA assumptions.

Input:	AH	= 4Fh	
	AL	= 09h	VBE Load/Unload Palette Data
	BL	= 00h	Set Palette Data
		= 01h	Get Palette Data
		= 02h	Set Secondary Palette Data
		= 03h	Get Secondary Palette Data
		= 80h	Set Palette Data during Vertical Retrace
			with Blank Bit on
	CX	=	Number of palette registers to update
			(to a maximum of 255)
	DX	=	First of the palette registers to update (start)
ES:DI		=	Table of palette values (see below for format)
Output:	AX	=	VBE Return Status

Format of Palette Values: Alignment byte, Red byte, Green byte, Blue byte

- 1) The need for BL= 80h is for older style RAMDACs where programming the RAM values during display time causes a "snow-like" effect on the screen. Newer style RAMDACs do not have this limitation and can easily be programmed at any time. Older RAMDACs require that they only be programmed during a non-display time to stop the "snow-like" effect seen when changing the DAC values. When this is requested, the VBE implementation programs the DAC with blanking on. Check D2 of the Capabilities field returned by VBE Function 00h to determine if 80h should be used instead of 00h.
- 2) The need for the secondary palette is for anticipated future palette extensions. If a secondary palette does not exist in an implementation and these calls are made, the VBE implementation will return error code 02h.
- 3) When in 6-bit mode, the format of the 6 bits is LSB. This is done for speed reasons, as the application can typically shift the data faster than the BIOS can.
- 4) All applications should assume the DAC is defaulted to 6-bit mode. The application is responsible for switching the DAC to higher color modes using Function 08h.
- 5) Query VBE Function 08h to determine the RAMDAC width before loading a new palette.

5.3.3.11 Subfunction: 0Ah - VBE Protected Mode Interface

This required function call returns a pointer to a table that contains code for a 32-bit protected mode interface that can either be copied into local 32-bit memory space or can be executed from ROM, providing the calling application sets all required selectors and I/O access correctly. This function returns a pointer (in real mode space) with offsets to the code fragments, and additionally returns an offset to a table which contains non-VGA port and memory locations to which an application may have to have I/O access.

Input:	AH	= 4Fh	
	AL	= 0Ah	VBE 2.0 Protected Mode Interface
	BL	= 00h	Return protected mode table
Output:	AX	=	Status
	ES	=	Real Mode Segment of Table
	DI	=	Offset of Table
	CX	=	Length of Table including protected mode
			code in bytes (for copying purposes)
The f	ormat of the	e table is as follows:	
	ES:DI	= 00h	Word Offset in table of Protected mode
			code for Function 5 for Set Window Call
	ES:DI	= 02h	Word Offset in table of Protected mode
			code for Function 7 for set Display Start
	ES:DI	= 04h	Word Offset in table of Protected mode
			code for Function 9 for set Primary Palette
			data
	ES:DI	=06h	Word Offset in table of Ports and
			Memory Locations for which the applica-
			tion may need I/O privilege.
			(Optional: if unsupported this must be
			0000h) (See Sub-table for format)
	ES:DI	=?	Variable remainder of Table including
			Code

The format of the Sub-Table (Ports and Memory locations)

Port, Port, ..., Port, Terminate Port List with FF FF, Memory locations (4 bytes), Length (2 bytes), Terminate Memory List with FF FF.

Example 1. For Port/Index combination 3DE/Fh and Memory locations DE800-DEA00h (length = 200h) the table would look like:

DE 03 DF 03 FF FF 00 E8 0D 00 00 02 FF FF

Example 2. For only the ports, it would look like:

DE 03 DF 03 FF FF FF FF

Example 3. For only the memory locations, it would look like:

FF FF 00 E8 0D 00 00 02 FF FF

NOTES:

1) All protected mode functions should end with a near RET (as opposed to FAR RET) to allow the application software to CALL the code from within the ROM. The Port and Memory location Sub-table does not include the Frame Buffer Memory location. The Frame Buffer Memory location is contained within the ModeInfoBlock returned by VBE Function 01h.

2) The protected mode code is assembled for a 32-bit code segment. When copying it, the application must copy the code to a 32-bit code segment. It is the application's responsibility to ensure that the selectors and segments are set up correctly. If the memory location is zero, then only I/O mapped ports will be used so the application does not need to do anything special. This should be the default case for ALL cards that have I/O mapped registers because it provides the best performance.

If the memory location is nonzero (there can be only one), the application will need to create a new 32-bit selector with the base address that points to the "physical" location specified with the specified limit.

When the application needs to call the 32-bit bank switch function, it must then load the ES selector with the value of the new selector that has been created. The bank switching code can then directly access its memory mapped registers as absolute offsets into the ES selector (i.e., mov [es:10],eax to put a value into the register at base+10).

It is up to the application code to save and restore the previous state of the ES selector if this is necessary (for example in flat model code).

3) Currently undefined registers may be destroyed with the exception of ESI, EBP, DS and SS.

4) Applications must use the same registers for the Function 05h and Function 09h protected mode interface that it would use in a real mode call. This includes the AX register.

5) Function 07h protected mode calls have a different format.

AH AL	= 4Fh =07h	
BL	=00h =80h	Set Display CRTC Start Set Display CRTC Start during Vertical Retrace
CX DX	= =	Bits 0-15 of display start address Bits 16-31 of display start address

The protected mode application must keep track of the color depth and scanline length to calculate the new start address. If a value that is out of range is programmed, unpredictable results will occur.

5.3.4 VBE Display Power Management Subfunctions(10h)

The VESA VBE Subfunction 10h is used to implement the VBE/Power Management (PM) services. The VBE/PM services are defined below and are not included in the VBE Standard documentation.

5.	3.	4.	1

Subfunction: 00h - Report VBE/PM Capabilities

Input:	AH = AL = BL = CX = ES:DI	4Fh 10h 00h 00h	VESA Extension VBE/PM Services Report VBE/PM Capabilities Controller unit number (00 = primary controller) Null pointer, must be 0000:0000h in version 1.0.
Output:	AX = BH =		Reserved for future use. aving state signals supported by the r(Note 1). 1 = supported, 0 = not supported. STAND BY SUSPEND OFF REDUCED ON (Note 2) Reserved for future power control of the display controller or other related circuits.
	BL =	(0001 00 bits 0-3	Version number 00b for this version) Minor Version number Major Version number
	CX= ES:DI	Unchang Unchang	

All other registers may be destroyed.

- 1) The attached display may not support all the power states that can be signaled by the controller. It is the responsibility of the power management program to determine the power saving states that are offered by the controller. If the controller has a means of determining which power saving state that is implemented in the attached display device, this function reports the power saving states that are supported by both the controller and the display.
- 2) REDUCED ON is not supported by DPMS 1.0 displays and is intended for use by Flat Panel Displays.

5.3.4.2	Subfui Input:	nction: 01 AH = AL = BL =	f h - Set Di 4Fh 10h 01h	splay Power State VESA Extension VBE/PM Services Set Display Power state
	Output:	BH = CX = AX = BH = CX =	00h 01h 02h 04h 08h	Requested Power state ON STAND BY SUSPEND OFF REDUCED ON (Note 2) All other BH values are currently undefined and are reserved for future power control of the display controller. Controller unit number (00 = primary controller) Status (Note 1) Unchanged Unchanged

All other registers may be destroyed.

- 1) If the requested state is not available, this function will return AX=014Fh to indicate that the function is supported but the call failed. The BH register and Display Power State shall be left unchanged in this case.
- 2) REDUCED ON is not supported by DPMS 1.0 displays and is intended for use by Flat Panel Displays.

BIOS Specifications

5.3.4.3	Subfui	nction: 02	02h - Get Display Power State		
	Input:	AH =	4Fh	VEŠA Extension	
		AL =	10h	VBE/PM Services	
		BL =	02h	Get Display Power state	
		CX =	00h	Controller unit number (00 = primary controller)	
	Output:	AX =		Status (Note 1)	
		BH =		Power state currently requested by the controller	
			00h	ON	
			01h	STAND BY	
			02h	SUSPEND	
			04h	OFF	
			08h	REDUCED ON (Note 2)	
			All other	BH values are reserved and may be used to signal	
			other pov	ver saving states in future revisions of VBE/PM. To	
			ensure future compatibility, applications written for VBE/PM 1.0 should ignore the value of bits 4-7.		
		CV -		Linebanged	

CX = Unchanged All other registers may be destroyed.

- 1) If this function is not supported by the controller hardware, AL=01 should be returned in the status register. This function should always read the controller hardware to determine the current power state. This function should not rely on any form of information stored in memory about what power state was last initiated through a VBE/PM call. The power state signaling can be initiated through many different hardware and software interfaces, making any stored information potentially invalid.
- REDUCED ON is not supported by DPMS 1.0 displays and is intended for use by Flat Panel Displays.

5.3.5 VBE Display Identification (DDC) Subfunctions(15h)

The VESA VBE subfunction 15h is used to implement the VBE/DDC services. The VBE/DDC interface allows the operating system and application software to retrieve the display identity information without specific hardware knowledge or direct hardware access. The hardware protocol for retrieving the display identity is described in the VESA standard DDC 1.0. The VBE/DDC services are defined below.

5.3.5.1 Subfunction: 00h - Report VBE/DDC Capabilities

Input:	AH =	4Fh	VESA Extension
	AL =	15h	VBE/DDC Services
	BL =	00h	Report DDC Capabilities
	CX =	00h	Controller unit number (00 = primary controller)
	ES:DI		Null pointer, must be 0:0 in version 1.0. Reserved for
			future use.
Output:	AX =		Status
	BH =		Approximate time in seconds, rounded up, to transfer
			one EDID block (128 bytes).
	BL =		DDC level supported (Note 1)
	bit 0	= 0	DDC1 not supported
		= 1	DDC1 supported
	bit 1	= 0	DDC2 not supported
		= 1	DDC2 supported
	bit 2	= 0	Screen not blanked during data transfer (Note 2)
		= 1	Screen blanked during data transfer
	CX =		Unchanged
	ES:DI		Unchanged
	All othe	r register	s may be destroyed.

- 1) DDC level supported by both the display and the controller.
- 2) This refers to the behavior of the controller and the VBE/DDC software.

5.3.5.2 Subfunction: 01h - Read EDID

Input:	AH = AL = BL = CX = DX = ES:DI	4Fh 15h 01h 00h 00h	VESA Extension VBE/DDC Services Read EDID Controller unit number (00 = primary controller) EDID block number. Zero is only valid value in version 1.0. Pointer to area in which the EDID block (128 bytes) shall be returned.
Output:	AX = BH = CX = ES:DI = All other	registers i	Status Unchanged Unchanged Pointer to area in which the EDID block is returned. may be destroyed.

5.3.6 VBE / Flat Panel Subfunctions (11h)

5.3.6.1 Flat Panel Interface Functions

This following functions are defined by the VBE/FP standard. VBE/FP functions are called using the INT 10h interrupt vector, passing arguments in the 80x86 registers. The INT 10h interrupt handler first determines if a VBE/FP function has been requested, and if so, processes that request; otherwise control is passed down the chain to the next INT 10h handler.

All VBE/FP functions are called with the AH register set to 4Fh and the AL register set to 11h. The AH register is used to determine that it is a VBE call, the AL register is used to determine that the Subfunction is a Flat Panel Extension.

For future revisions of the specification, VBE/FP assumes that other registers in a function call will be destroyed; the exception to this is SI,BP,DS,SS for obvious reasons and ES:DI when not used to return information. This assumption allows for the use of other currently undefined registers in each function, if necessary.

Reserved values should always be set to the value zero (0).

5.3.6.2 VBE/FP Completion Codes

The AX register is used to indicate the completion status upon return from VBE functions. If VBE support for the specified function is available, the 4Fh value passed in the AH register on entry is returned in the AL register. If the VBE function completed successfully, 00h is returned in the AH register. Otherwise the AH register is set to indicate the nature of the failure.

VBE RETURN STATUS

AL	== 4Fh:	Function is supported
AL	!= 4Fh:	Function is not supported
AH	== 00h:	Function call successful
AH	== 01h:	Function call failed
AH	== 02h:	Function is not supported in the current hardware configuration
AH	== 03h:	Function call invalid in current video mode

Note: Applications should treat any non-zero value in the AH register as a general failure condition as later versions of the VBE may define additional error codes.

5.3.6.3 Subfunction 00h - Panel Extensions Support

This function is designed to allow application developers to get information about the Flat Panel Extensions. This function is required by VBE 2.0 as a Supplemental Specification. For more details on the decisions for this function, please refer to the VESA BIOS Extensions Standard version 2.0 Chapter 5.

Input:	AH	= 4F	VBE Flat Panel Extension request
	AL	= 11h	Return Flat Panel Extensions Support Information
	BL	= 00h	Pointer to 256 byte buffer in which to place
	ES:DI	=	SupVbeInfoBlock structure
Output:	AX	=	VBE Return Status

(Note: Currently undefined registers may be destroyed with the exception of SI,BP,DS and SS)

Description of the SupVbeInfoBlock structure

The information block has the following structure:

SupVbeInfoBlock struc			
SupVbeSignature	db	'VBE/FP',0FFh	; Supplemental VBE Signature
SupVbeVersion	dw	0100h	; Supplemental VBE Version
SupVbeSubFunc	db	03h,7 dup (0)	; Bitfield of supported subfunctions
OemSoftwareRev	dw	?	; OEM Software revision
OemVendorNamePtr	dd	?	; Pointer to Vendor Name String
OemProductNamePtr	dd	?	; Pointer to Product Name String
OemProductRevPtr	dd	?	; Pointer to Product Revision String
OemStringPtr	dd	?	; Pointer to OEM String
Reserved	db	221 dup (?)	; Reserved for description strings and
			; future expansion

SupVbeInfoBlock ends

Note: All data in this structure is subject to change by the VBE implementation when any VBE Subfunction 00h is called. Therefore it should not be used by the application to store data of any kind; if the information is required at a later time, a local copy of the data should be made.

The **SupVbeSignature** field is filled with the ASCII characters 'VBE/FP'. The 7th character must be filled with FFh.

The **SupVbeVersion** is a BCD value which specifies what version of VBE/FP is implemented in the software. The higher byte specifies the major version number. The lower byte specifies the minor version number. The current value is: 0100h.

The **SupVbeSubFunc** is a bitfield that represents the subfunctions available in this implementation of VBE/FP. If the bit representing a particular subfunction is set to 1, then that subfunction is supported. Subfunction '00h' is represented by the LSB of the first byte, bit 1 corresponds to subfunction 01h and the other subfunctions follow suit. The LSB of byte 2 corresponds to subfunction 09h etc. Only bits for subfunctions defined in the specification can be set to 1, other bits should be set to 0. The required function set for VBE/FP is 0000 001, the other bits must be set to 1 if the corresponding subfunctions are implemented. In addition, any subfunctions not supported should turn the corresponding bits to 0 and must return AL!=4Fh as a completion code.

The **OemSoftwareRev** field is a BCD value which specifies the OEM revision level of VBE/FP. The higher byte specifies the major version number. The lower byte specifies the minor version number. This field can be used to identify the OEM's software release, so that upgrades can be identified.

The **OemVendorNamePtr** is a Real Mode far pointer to a null-terminated OEM-defined string containing the name of the vendor who produced the display controller board product. Other supplemental functions may point to the same location.

The **OemProductNamePtr** is a Real Mode far pointer to a null-terminated OEM-defined string containing the product name of the display controller board. Other supplemental functions may point to the same location.

The **OemProductRevPtr** is a Real Mode far pointer to a null-terminated OEM-defined string containing the revision or manufacturing level of the display controller board product. This field can be used to determine which production revision of the display controller board is installed. Other supplemental functions may point to the same location.

The **OemStringPtr** is a Real Mode far pointer to a null-terminated OEM-defined string. This string may used to identify the graphics controller chip or OEM product family for hardware specific display drivers. There are no restrictions on the format of the string. This pointer may point into either ROM or RAM, depending on the specific implementation. Other supplemental functions may point to the same location.

5.3.6.4 Subfunction 01h - Return Flat Panel Info

This subfunction allows application software to determine information about the currently attached flat panel.

Input:	AH	= 4F	VBE Flat Panel Extension request
	AL	= 11h	Return Flat Panel Information
	BL	= 01h	Pointer to 32 byte buffer in which to place
	ES:DI	=	FPInfo structure
Output:	AX=		VBE Return Status

(Note: Currently undefined registers may be destroyed with the exception of SI,BP,DS and SS)

FPInfo struc			
HSize	dw	?	; Horizontal Size in Pixels
VSize	dw	?	; Vertical Size in Lines
FPType	dw	?	; Technology (TSTN LCD, TFT LCD,
			; Plasma, EL), Single/Dual, Color/Mono
RedBPP	db	?	; Red Bits Per Primary
GreenBPP	db	?	; Green Bits Per Primary
BlueBPP	db	?	; Blue Bits Per Primary
ReservedBPP	db	0	; Reserved Bits Per Primary
RsvdOffScrnMemSize	dd	?	; Size in KB of Offscreen Memory
			; required frame buffer
RsvdOffScrnMemPtr	dd	?	; Pointer to reserved offscreen memory
Reserved	db	14 dup(0)	; remainder of FPInfo
FPInfo ends			

The **HSize** field is an integer value representing the horizontal size of the flat panel in pixels. A typical 640x480 flat panel will have an HSize = 640 (280h).

The **VSize** field is an integer value representing the vertical size of the flat panel in pixels. A typical 640x480 flat panel will have an VSize = 480 (1E0h).

The **FPType** describes the type of the flat panel as follows:

D0	= 0	Monochrome
	= 1	Color
D1	= 0	Single panel construction
	= 1	Dual (Split) panel construction
D2-D7	= 0000 00	STN (Passive Matrix)
	= 0000 01	TFT (Active Matrix)
	= 0000 10	Other LCD
	= 0000 11	EL
	= 0001 00	Plasma
D8-D15	5=	Reserved

The **RedBPP**, **GreenBPP**, and **BlueBPP** represent the color (mono) capabilities of the panel. The number of Bits Per Primary (BPP) is a description of the color depth supported by the panel. The GreenBPP field should be used for monochrome panels such that an 8-bit per pixel monochrome panel should be described as RedBPP:GreenBPP:BlueBPP = 0:8:0. Note that this field describes the capability of the panel and not the color palette or frame rate control capabilities of the graphics controller.

The **ReservedBPP** is a reserved field indicating BitsPerPrimary in the event that color depths increase beyond 24-bit. This is the same method that VBE 1.2 uses to reserve extra information for color depth. This field shall be reserved as 0 until needed.

The **RsvdOffScrnMemSize** is the size of the unavailable Off Screen Memory that is required for flat panel related issues such as dual drive panel frame buffers. This size should be subtracted from the Total Memory installed that is reported by VBE Core functions.

The **RsvdOffScrnMemPtr** is a pointer to the location of the unavailable memory used for the full or half frame buffers.

The remainder of the FPInfo structure is **Reserved** for future use.

5.3.6.5 Subfunction 03h - Panel Shading Options

This subfunction allows an end user the ability to select between a number of different shading options supported by the current video controller. This becomes most useful when displaying color modes on a monochrome flat panel. Examples of such shading may be: NTSC; green gun only; or various combinations of R,G,B weighting. The above shading examples are not required by this specification, this subfunction simply supplies the end user a means of selecting from the OEM supplied options.

An application that may use this function could be a control panel which after querying VBE/FP for the number of options, gives the user a cyclic method to select one of the different gray scale methods. Because gray scale methods are subjective and different OEMs will supply different options, the user would only need to know which option they prefer for their implementation. To keep this function as flexible as possible it was decided that assigning specific names to options should not be done. (This allows OEM1 to supply different options from OEM2.)

Get Request Sequence:

	Input:	AH AL BL BH	= 4F = 11h = 03h = 00h	VBE Flat Panel Extension request Return/Select Shading Options Get number of shading options request		
	Output:	AX CL CH	= = =	VBE Return Status Number of shading options Current shading option		
Set Request Sequence:						
	Input:	AH AL BL BH CH	= 4F = 11h = 03h = 01h =	VBE Flat Panel Extension request Return/Select Shading Options Select option request Shading option number to set		
	Output:	AX	=	VBE Return Status		

Notes:

- Currently undefined registers may be destroyed with the exception of SI,BP,DS,SS,ES and DI)
- 2) This subfunction may only be supported on monochrome panels

5.3.6.6 Subfunction 06h - Vertical & Horizontal Position

This subfunction allows an application the ability to position the displayed portion of a mode. The need for this subfunction arises from the fact that today's flat panel devices are of fixed dimensions, and the displayed portions of some modes are smaller than these fixed dimensions. With the ability to position the displayed portion of a mode, an application can produce a better look.

This subfunction represents a global hardware setting. Other factors within the current operation of the controller may limit whether or not this setting actually occurs (e.g., controller may not allow centering of a 350-line image but will center a 400-line image). The result is that the hardware request for centering is actually set; however its effectiveness may be mode dependent.

VBE/FP Implementations of this function should return actually hardware values that have been set, not mode dependent information.

Set Request Sequence:

Input:	AH AL BL BH	= 4F = 11h = 06h = 00h	VESA VBE Flat Panel Extension request Return/Select Vertical and Horizontal Positioning Return request
Output:	AX BL	= =	VESA VBE Return Status Available Horizontal Position Settings B0=Left B1=Center B2=Right B3-B7=Reserved, must be 0
	ВН	=	Available Vertical Position Settings B0=Top B1=Center B2=Bottom B3-B7=Reserved, must be 0
	CL	=	Current Horizontal Position 0=Left 1=Center 2=Right all other values are reserved
	СН	=	Current Vertical Position 0=Top 1=Center 2=Bottom

Select Req	Select Request Sequence:						
Input:	AH	= 4F					
	AL	= 11h	VESA VBE Flat Panel Extension request				
	BL	= 06h	Return/Select Vertical and Horizontal Positioning				
	BH	= 01h	Select request				
	CH	=	Vertical Position to set				
			0=Тор				
			1=Center				
			2=Bottom				
			all other values are reserved				
	CL	=	Horizontal Position to set				
			0=Left				
			1=Center				
			2=Right				
			all other values are reserved				
Output:	AX	=	VESA VBE Return Status				

all other values are reserved

Notes:

- 1). Currently undefined registers may be destroyed with the exception of SI,BP,DS,SS,ES and DI)
- 2). If Vertical Positioning is not available, Current Vertical Position shall return zero (BL=00h), Available Vertical Position Settings shall return zero (BH=00h), and any attempt to set a position shall be ignored. If Horizontal Positioning is not available, Current Horizontal Position shall return zero (CL=00h), Available Horizontal Position Settings shall return zero (CH=00h), and any attempt to set a position shall be ignored.

5.3.6.7 Subfunction 07h - Vertical & Horizontal Expansion

This subfunction allows an application the ability to expand the displayed portion of a mode. The need for this subfunction arises from the fact that today's flat panel devices are of fixed dimensions, and the displayed portions of some modes are smaller than these fixed dimensions. With the ability to expand the displayed portion of a mode, an application can produce a better look.

This subfunction represents a global hardware setting. Other factors within the current operation of the controller may limit whether or not this setting actually occurs. For example, a controller may not allow expansion of a 14-point font, however it will expand a 16-point font. The result is that the hardware request for expansion is actually set; however its effectiveness may be mode dependent.

VBE/FP Implementations of this function should return actually hardware values that have been set, not mode dependent information.

Return Request Sequ	ence:		
Input:	AH AL BL BH	= 4F = 11h = 07h = 00h	VESA VBE Flat Panel Extension request Return/Select Vertical and Horizontal Expansion Return request
Output:	AX BL	=	VESA VBE Return Status Available Horizontal Expansion Settings B0=Text Expansion 0 = Not Available, 1= Available B1=Graphics Expansion 0 = Not Available, 1= Available B2-B7=Reserved, must be 0
	ВН	=	Available Vertical Expansion Settings B0=Text Expansion 0 = Not Available, 1= Available B1=Graphics Expansion 0 = Not Available, 1= Available B2-B7=Reserved, must be 0
	CL	=	Current Horizontal Expansion B0=Text Expansion 0 = Disabled, 1 = Enabled B1=Graphics Expansion 0 = Disabled, 1 = Enabled B2-B7=Reserved, must be 0
	СН	=	Current Vertical Expansion B0=Text Expansion 0 = Disabled, 1 = Enabled B1=Graphics Expansion 0 = Disabled, 1 = Enabled B2-B7=Reserved, must be 0

Select Request Sequence:

OCICCUIN	equest beque			
	Input:	AH AL BL BH CH	= 4F = 11h = 07h = 01h =	VESA VBE Flat Panel Extension request Return/Select Vertical and Horizontal Expansion Select request Vertical Expansion B0=Text Expansion 0 = Disabled, 1 = Enabled
				B1=Graphics Expansion 0 = Disabled, 1 = Enabled B2-B7=Reserved, must be 0
		CL	=	Horizontal Expansion B0=Text Expansion 0 = Disabled, 1 = Enabled B1=Graphics Expansion 0 = Disabled, 1 = Enabled B2-B7=Reserved, must be 0
	Output:	AX	=	VBE Return Status

Note:

- 1) Currently undefined registers may be destroyed with the exception of SI,BP,DS,SS,ES and DI.
- 2) If Vertical Expansion is not available, Current Vertical Expansion shall return zero (BL=00h), Available Vertical Expansion Settings shall return zero (BH=00h), and any attempt to set vertical expansion shall be ignored. If Horizontal Expansion is not available, Current Horizontal Expansion shall return zero (BL=00h), Available Horizontal Expansion Settings shall return zero (BH=00h), and any attempt to set horizontal expansion shall be ignored.

5.4 BIOS Data Area Assignments

Note:	Bold typeface indicates CGA/MDA/EGA- and VGA-datamap.
	Normal typeface is for system datamap.

0040:0000 WORD 0040:0002 WORD 0040:0004 WORD 0040:0006 WORD			COM1 port base address COM2 port base address COM3 port base address COM4 port base address
0040:0008 WORD 0040:000A WORD 0040:000C WORD 0040:000E WORD			Printer 1 port base address Printer 2 port base address Printer 3 port base address Printer 4 port base address
0040:0010 WORD	EQUIPMENT_FLAG		
	Bit D15, D14 D13,D12 D11,D10,D9 D8 D7,D6 D5,D4 D3,D2 D1 D0	Reserve No. of R Reserve No. of di Identify t device: D5 D 0 0 1 1 1 0 1 1 Reserve	rinter adapters ed 2S232-C ed iskette drives the current primary display A Adapter EGA (or none) CGA 40 X 25 CGA 80 X 25 MDA ed
0040:0012 BYTE 0040:0013 WORD 0040:0015 BYTE 0040:0016 BYTE 0040:0017 WORD 0040:0019 BYTE 0040:001A WORD 0040:001C WORD 0040:001E 16 WORDS 0040:003E BYTE 0040:003F BYTE 0040:0040 BYTE	USABLE_RAM KBD_CNTRL ALT_KBD KBD_BUF_HD KBD_BUF_TL KBD_BUFFER	Reserve Reserve Stores s Alternate Points to Circular Diskette Diskette	memory size in kilobytes

0040:0041 BYTE 0040:0042 7 BYTES		Last diskette driver operation status Diskette driver controller status
0040:0049 BYTE 0040:004A WORD 0040:004C WORD 0040:004E WORD	VIDEO_MODE COLUMNS PAGE_LENGTH START_ADDR	Current BIOS Video mode Number of text columns Length of each page in bytes Start Address register value for page
0040:0050 8 WORDS	CURSOR_POS	Cursor positions for all eight pages. The high byte of each word contains the character row, the low byte the col- umn
0040:0060 WORD	CURSOR_TYPE	Start and ending lines for text cursor. High byte has start line.
0040:0062 BYTE 0040:0063 WORD	ACTIVE_PAGE ADDR_CRTC	Currently displayed page number I/O port address of 6845/CRTC address register (3B4 monochrome;
0040:0065 BYTE	CRT_MODE_SET	3D4 color) Current value for Mode Control register (3B8 MDA; 3D8 CGA). The EGA and VGA values emulate the MDA/CGA
0040:0066 BYTE	CRT_PALETTE	values Current value for the CGA color select register (3D9); emulated by EGA/VGA
0040:0067 DWORD		Pointer to MCA PS/2 reset code
0040:006B BYTE		Reserved
0040:006C DWORD		Timer counter
0040:0070 BYTE		Timer overflow
0040:0071 BYTE		Break key state
0040:0072 WORD		RESET flag
0040:0074 BYTE		Last hard disk drive operation status
0040:0075 BYTE		No. of hard disk drives attached
0040:0076 BYTE		PC XT hard disk drive control
0040:0077 BYTE		PC XT hard disk drive controller port
0040:0078 BYTE		Printer 1 Time-out value
0040:0079 BYTE		Printer 2 Time-out value
0040:007A BYTE		Printer 3 Time-out value
0040:007B BYTE		Printer 4 Time-out value
0040:007C BYTE		COM1 Time-out value
0040:007D BYTE		COM2 Time-out value
0040:007E BYTE		COM3 Time-out value
0040:007F BYTE		COM4 Time-out value
0040:0080 WORD		Keyboard Buffer Start Offset pointer
0040:0082 WORD		Keyboard Buffer End Offset pointer
0040:0084 BYTE		ROWSNumber of text rows minus 1

0040:0085 WORD 0040:0087 BYTE	CHAR_HEIGHT INFO_1	Bytes-per-character
	Bit D7	Description Equals bit D7 from AL register on most recent mode select. (A one indicates display memory was not cleared by mode select.)
	D6, D5	Display memory size (00=N/A, 01=N/A, 10=N/A, 11=256K).
	D4	Reserved
	D3	A zero indicates EGA is the primary display.
	D2	A one will force the BIOS to wait for Vertical Retrace before memory write.
	D1	A one indicates that EGA is in Monochrome mode.
	D0	A zero means that CGA cursor emulation is enabled. The cursor shape is modified if enhanced text is used.
0040:0088 BYTE	INFO_3	
	D4-D7	Feature Control bits (from Feature Control register)
	DO-D3	EGA Configuration Switch settings
0040:0089 BYTE	FLAGS	Miscellaneous flags
	D7	Alphanumeric Scanlines (with bit 4): Bit 7 Bit 4 0 0 350-line mode 0 1 400-line mode 1 0 200-line mode 1 1 (reserved)
	D6	1 – display switching is enabled 0 – display switching is disabled
	D5	Reserved
	D4	(see bit 7)
	D3	 1 – default palette loading is disabled 0 – default palette loading is enabled
	D2	1 – using monochrome monitor 0 – using color monitor
	D1	 1 – grayscale summing is enabled 0 – grayscale summing is disabled
	D0	1 – VGA active 0 – VGA not active

0040:008A BYTE		Reserved	
0040:008B BYTE		Media control	
0040:008C BYTE		Hard disk drive contr	oller status
0040:008D BYTE		Hard disk drive error	status
0040:008E BYTE		Hard disk drive interr	upt control
0040:008F BYTE		Reserved	•
0040:0090 BYTE		Drive 0 Media state	
0040:0091 BYTE		Drive 1 Media state	
0040:0092 BYTE		Reserved	
0040:0093 BYTE		Reserved	
0040:0094 BYTE		Drive 0 Current cyline	der
0040:0095 BYTE		Drive 1 Current cyline	der
0040:0096 BYTE		Keyboard mode State	e and Type
		flags	
0040:0097 BYTE		Keyboard LED Flags	
0040:0098 WORD		Address offset to Use	er Wait
		Complete flag	
0040:009A WORD		Segment address to	User Wait
		Complete flag	
0040:009C WORD		User wait count – Lo	w word
		(Mseconds)	
0040:009E WORD		User wait count – Hig	gh word
		(Mseconds)	
0040:00A0 BYTE		Wait active flag	
0040:00A1 BYTE		Reserved	
0040:00A2 BYTE		Reserved	
0040:00A3 BYTE		Reserved	
0040:00A4 BYTE		Reserved	
0040:00A5 BYTE		Reserved	
0040:00A6 BYTE		Reserved	
0040:00A7 BYTE		Reserved	
0040:00A8 DWORD	SAVE PTR	Pointer to BIOS Save	e Pointer
	-	Table	

NOTE: The next 84 bytes from 0040:00A1 to 0040:00FF are reserved.

I/O Port Assignment f	or PC XT and A	AT Computers
Port Usage for PC XT	I/O Address	Port Usage for AT
DMA Controller	000–0IF	DMA Controller, Note 1
Interrupt Controller	020–03F	Interrupt Controller, Note 1
Timer	040–04F	Coprocessor access, Timer
	050–05F	Timer
PPI	060-063	-
(system configuration)	060–06F	Keyboard
Reserved	070–07F	Real-time Clock
DMA Page register	080–09F	DMA Page register
NMI Mask register	0A0-0AF	
	0A0-0BF	Interrupt Controller, Note 2
Reserved	0B0-0FF	
	0C0-0DF	DMA Controller, Note 2
	0F0-0FF	Math coprocessor
Unusable	100–13F	Reserved
Unusable	140–14F	Token Ring Adapter, Note 2
Unusable	150–15F	Advanced Color Graphics Display
Ollusable	150-151	Advanced Color Graphics Display
Unusable	160–16F	Advanced Monochrome Graphics Display
Unusable	170–177	Fixed-disk Adapter, Note 2
Unusable	1C0–1CF	Token Ring Adapter, Note 1
Unusable	1E8–1EF	Streaming Tape Drive Adapter
Unusable	IF0–IF7	Fixed-Disk Adapter, Note 1
Unusable	1F8–1FF	Reserved
Game I/O	200–20F	Game I/O
Expansion Unit	210–217	Game #O
Multifunction Card,	210-217	
Note 1	218–21F	Multifunction Cord, Noto 1
		Multifunction Card, Note 1
Reserved	220–24F 278–27F	Devellel next 2
		Parallel port 2
	2B0	GD5462 Host Control register for VESA VL-
	000 005	Bus Clock Calendar,
Note 1	2C0-2CF	Clock Calendar, Note 1
	2D0–2DF	3278/79 Emulation Adapter, Clock/calen-
	050 057	dar, Note 1
Serial port 4, Note 1	2E0–2E7	
Serial port 3 or 4,		
Note 1	2E8–2EF	
Reserved	2F0–2F7	Interrupt Sharing
Serial port 2	2F8–2FF	Serial port 2
Prototype Card	300–31F	Prototype Card
Fixed Disk	320–32F	
	360–36F	PC Network
Parallel port 1	378–37F	Parallel port 1
SDLC	380–38F	SDLC, Bisync 2
Bisync	3A0–3AF	Bisync 1

Programmer's Reference

6 **Programmer's Reference**

6.1 Overview

This section of the Technical Reference Manual provides information of particular interest to programmers of the SM3110 graphics chip.

A key component of programming for the SM3110 is the ability to access all of the registers, FIFO and data areas of the graphics hardware and memory regions. This section begins with by detailing the addressing spaces and access modes of the SM3110.

Following the address space introduction are the subsections describing the setup and use of the graphics chip itself. The topics presented are arranged from initialization by the BIOS and driver, through the 2D and 3D functions. Then the remaining capabilities of the device are described. Finally, some equates and macros are defined that make the coding easier.

6.2 Address Mapping

Programming for the SM3110 requires access to four(4) address spaces:

- (1) VGA addresses for direct I/O port access at 3CxH, 3BxH, 3DxH
- (2) VGA addresses for VGA frame buffer access at A0000H (128KB); (larger memory for Super VGA frame buffer data is made accessible via an I/O addressed bank/offset register)
- (3) PCI configuration space (256B)
- (4) SM3110 "Local Memory" addresses, encompassing all the embedded memory and memory-mapped registers (128MB)

In addition to having their standard addresses, address spaces (1) and (3) have memory-mapped addresses within the SM3110 Local Memory range.

6.2.1 Local Memory Address Space

The term "local memory" refers to the 32MB linear address space within which the SM3110 maps all of its available embedded memory, as well as its internal registers and memory-mappings of VGA and PCI registers. In order to support all variations of little-endian/big-endian and word/double word byte-swapping architectures, the SM3110 requires a total address space of 128MB (out of the 4GB available) address space. The four(4) individual 32MB address spaces are multiply-mapped to the one 32MB local memory area required. This is shown in Figure 6-1.

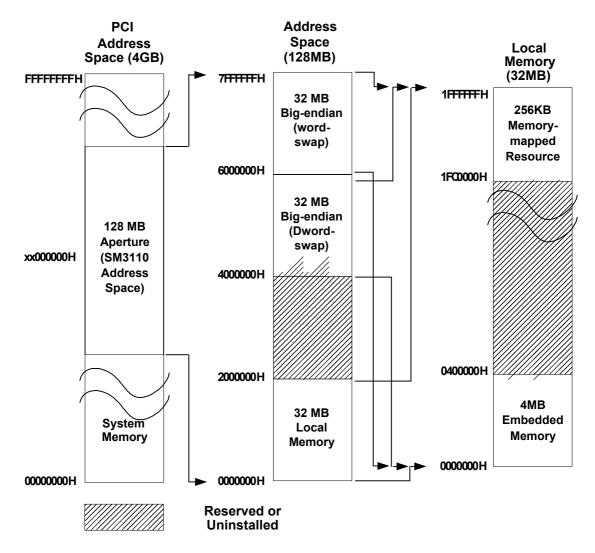


Figure 6-1. SM3110 Address Space Allocation

		Little Endian	Little Endian (Reserved)	Big Endian (Dword Swap)	Big Endian (word Swap)
Range	Size	Base	Base	Base	Base
Display Memory	31.75MB	0000000H	02000000H	04000000H	06000000H
Memory-mapped	0.25MB	01FC0000H	03FC0000H	05FC0000H	07FC0000H
Resources					
Total	32.00MB				

Table 6-1. Local Memory Space Allocation

Also shown in Figure 6-1 is a further division of the 32MB local memory addresses into two areas:

- (1) 256KB at the top of the address range, for memory-mapping SM3110 and other system resources
- (2) 31.75MB at the bottom of the address range, for addressing the SM3110 display memory (of which of 4MB is used for embedded memory on the SM3110)

The embedded 4MB display memory is dynamically partitioned by the software to provide data buffers, frame buffers, FIFO's, etc. These divisions and areas are discussed later in this section.

6.2.2 Memory-Mapped Resources Address Space

The 256KB region (at the top of local memory) for memory-mapped resources is further divided into four areas:

- (1) Control addresses (64KB)
- (2) Peripheral I/O addresses (64KB)
- (3) Reserved (64KB)
- (4) Embedded memory configuration registers

as shown in Figure 6-2.

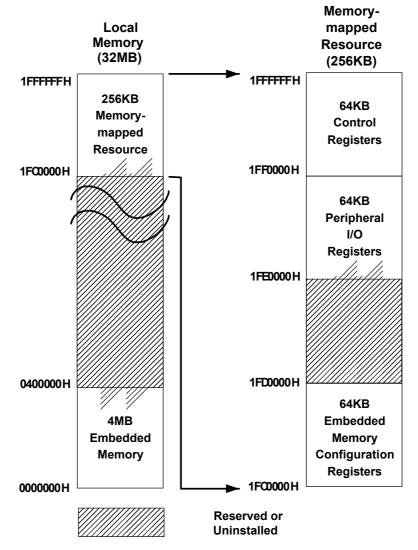
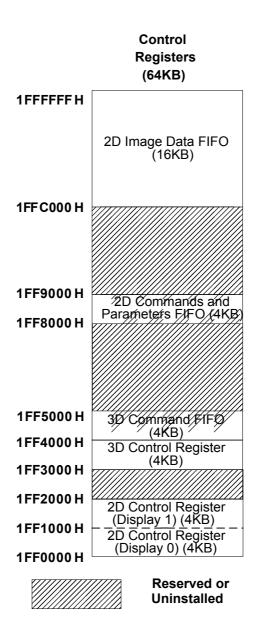



Figure 6-2. Memory-mapped Resources

6.2.3 Control Address Space Memory Mapping

The 64KB Control Address space is divided into five regions as shown in Figure 6-3. Each of these regions is discussed briefly in the following sections. The registers which access these regions are defined in Section 4, Register Summary.

6.2.3.1 2D Control Registers (Display 0/Display 1)

The 2D control registers occupy two 4KB (8KB total) memory-mapped address spaces. Registers that are common to both Display 0 and Display 1 are at the same offset within their respective 4KB address spaces. The layout of this region is shown in Figure 6-4 and described in detail in Section 4, Register Summary.

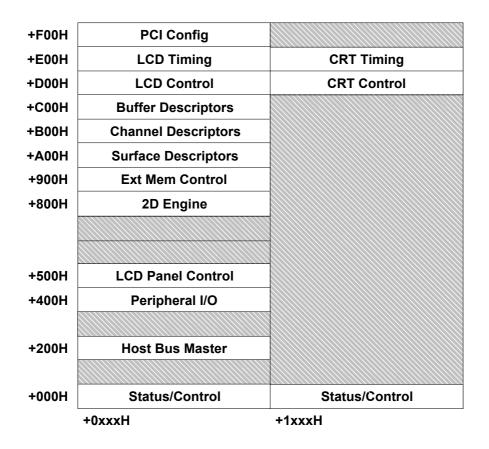


Figure 6-4. 2D Control Register Space

6.2.3.2 3D Control Registers

The 3D control registers occupy a 4KB memory-mapped address space. The layout of this region is shown in Figure 6-5 and described in detail in Section 4, Register Summary.

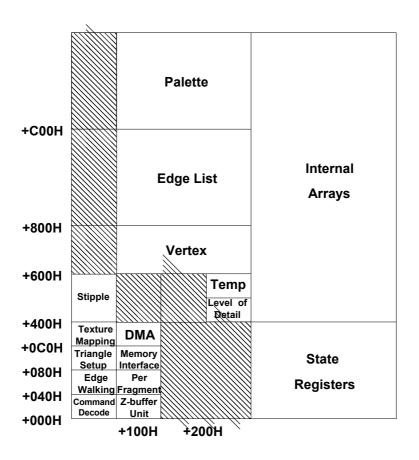


Figure 6-5. 3D Control Register Space

Access to 3D state registers is provided through a 4KB memory-mapped address space. Each register is directly accessible (via PCI) with byte granularity. State registers loaded via the command/parameter stream are, however, only writable with a granularity of 16 bits, i.e., all bits within the 16-bit word are modified. For this reason, control fields are grouped so that fields that are typically modified together are located in the same or nearby words. For PCI access, data must be correctly byte-aligned. These registers can be read and written directly for diagnostic and debug purposes.

6.2.3.3 3D Command/Parameter FIFO

A 4KB input (write-only) FIFO port is reserved for command and parameter transfers from the host to the 3D rendering engine. All accesses to anywhere in the window will be written to the location pointed to by the FIFO write pointer. The actual memory region reserved for the FIFO is configurable in 16KB increments up to 1MB on 16KB boundaries. It can be located at any addressable memory region within the 32MB local address space (see 3D Command FIFO)

6.2.3.4 2D Command/Parameter FIFO

A 4KB input (write-only) FIFO port is reserved for command and parameter transfers from the host to the 2D rendering engine. All accesses to anywhere in the window will be written to the location pointed to by the FIFO write pointer. The actual memory region reserved for the FIFO can be configurable to 1KB, 8KB, 16KB, or 32KB in size. It can be located at any addressable memory region addressable within the 32MB local address space.

6.2.3.5 2D Image Data FIFO

A 16KB input (write-only) FIFO port is reserved for 2D image data transfers from the host. All accesses to anywhere in the window will be written to the location pointed to by the FIFO write pointer. The actual memory region reserved for the FIFO can be configurable to 1KB, 8KB, 16KB, or 32KB in size. It can be located at any addressable memory region within the 32MB local address space.

6.2.4 Display Memory Arrays

The following arrays are located in display (internal/embedded DRAM) memory:

6.2.4.1 Surfaces

All 2D operations operate on surfaces defined by surface descriptor registers that specify the base, stride and pixel format of the specific array.

6.2.4.2 Texture Memory

Texture memory consists of multiple bitmaps containing different views of textures to be applied to objects. A base and end register in increments of 4KB define the region that may be used for texture memory.

6.2.4.3 Z-Buffers

The Z-buffer is typically a 16-bit bitmap the same size as the front and back buffers. It is initialized to a constant value representing the largest (farthest) position from the viewer. It is accessed sequentially in short horizontal spans just prior to rendering the span. If the Z value of the pixel being rendered is less than the stored Z value, the pixel is in front of the previously rendered pixel and it is written to the back buffer. The Z-buffer is then updated with the new Z value. The most frequent Z-buffer accesses are short sequential reads followed by short sequential writes (masked by the byte enable).

6.2.4.4 Memory Buffer Allocation

Memory for textures, draw and Z-buffer are stored within the same logical address space. The entire address space, however, need not be contiguous, i.e., it may be composed of several different regions.

The following restrictions apply to the allocation of buffers:

- The command/parameter/data FIFO must be in display memory. This buffer's size is programmable up to one megabyte.
- The Z-buffer must be contiguous.
- Each of the front and back buffers must be contiguous within a region.
- Textures must be in display memory.

6.2.5 Byte Ordering

As previously discussed, the SM3110 supports both little- and big-endian accesses to the entire linear address space, determined by the most significant address bit ([26]). In big-endian mode, two different byte orders are supported, selected by the 2nd most significant bit ([25]) of the address. Because both data registers and memory-mapped enhanced control registers are accessible in this linear address space, it is possible to access both memory and registers in either byte ordering by using different addresses, even on an individual doubleword basis.

	A[26:25]	Endian	Swapping	Processor
	00	little endian	Bytes within DWORDs	x86, Alpha
01 <i>Reserved</i> 10 big endian		Reserved		
		big endian	Bytes within DWORDs	PowerPC: 8, 32bpp
	11	big endian	Bytes within WORDs	PowerPC: 16bpp

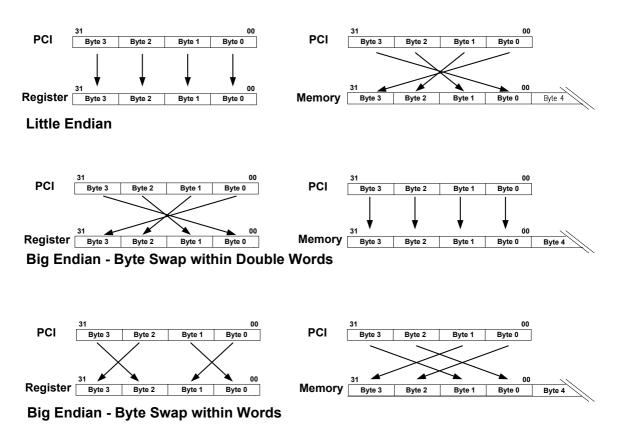


Table 6-2. Byte Order Selection

6.3 **BIOS Functions**

VGA BIOS (Basic Input and Output Service) provides many low level services to higher level programs. The interface is defined by IBM and VESA committee. Section 5, BIOS Specification, of this document describes in detail all the supported functions. It also defines all the modes supported by the SM3110. This section describes how the BIOS programs the SM3110 in order to achieve those tasks defined in the BIOS Specification.

Among all the services provided by the BIOS, the two most important are initialization and mode setting. The following sections describe the exact sequence the BIOS performs to achieve these two tasks.

6.3.1 BIOS Initialization: Power-On Self Test (POST)

Prior to using any of the functions of the SM3110, several initialization steps are required. These actions are performed as part of the Power-On Self Test (POST) of the BIOS.

POST will be executed during cold boot or warm boot. During cold boot, a hardware-reset signal connected to the chip will be toggled, followed by a call into POST. For warm boot (when the user hits Crtl-Alt-Del), POST is the only function that gets called. Therefore, POST has the responsibility to initialize the chip back to its reset state. The pseudocode below shows how the BIOS initializes the hardware during the POST function.

0x3C3 ? 1	// Turn on video sub-system				
0x3CE _ 0x80 0x3CF _ 0x53 0x3CF _ 0x4D	<pre>// Max locking register // `S' - first unlock code // `M' - second unlock code, unlock extended registers</pre>				
Program 0x80 to 0x82	// Memory clock				
// Initialize following registers					
0xF1 0	// Disable all interrupts				
0x2F1 0	// Disable host DMA interrupt				
0x224_0	// Clear host DMA count				
0x8F1 _ 0x80	// Reset 2D engine				
0x910 _ 0x37	// Internal refresh rate divide ratio				
0xDF5 _ 0	// Disable double scan for display 0				
0x1DF5_ 0	// Disable double scan for display 1				
0xDF7 _ 0	// Set DAC 0 to normal				
0x1DF7 _ 0	// Set DAC 1 to normal				
0xDF4 _ 0	// Disable ECRT 0 - set to VGA				
0x1DF4 _ 0	// Disable ECRT 1				
0xD00 _ 0	// Disable cursor channel 0				
0x1D00 _ 0	// Disable cursor channel 1				
0xD10 _ 0	// Disable icon channel				
0xD20 _ 0	// Disable scaler channel 0				
0x1D20 _ 0	// Disable scaler channel 1				
0xD30 _ 0	// Disable display channel 0				
0x1D30 _ 0	// Disable display channel 1				

Programmer's Reference

0xCF0 0 // Disable deferred control 0 0xCF4 _ 0 // Disable deferred control 1 0xF04 7 // PCI command register // Initialize LCD registers Disable stretching - 0x504 Power management Control - 0x508 LCD type and misc. - 0x 510 Dithering and frame rate modulation - 0x514 DSTN starting address - 520 Call set mode routine to set to mode 3 Detect CRT // Check whether monitor is attached Turn on 0x3C4 index 1 bit 5 // Turn off screen Memory test // Also detect memory size Test DAC Exit

6.3.2 Set Mode

After POST, setting mode becomes the most essential portion of BIOS. Its responsibility is to set the hardware to a known working state. The pseudocode below shows how the BIOS handles this function.

```
0xDF4 0
                              // Turn off ECRTC, enable VGA CRTC
0xDF7 0
                               // Set DAC to normal
3C4.1 bit 5 1
                                // Turn off screen
If(Standard VGA Mode)
{
  Set standard VGA registers - 3C4/5, 3D4/5, 3C0/1, 3CE/F, etc. according to
                                       the mode
Program 3C8, 3C9 // Initialize palette if necessary
// Reset following registers
0xD00 _ 0// Disable cursor channel 00xD10 _ 0// Disable icon channel0xD20 _ 0// Disable scaler channel 00xD30 _ 0// Disable display channel 00x8F1 _ 0x80// Reset 2D engine
If(Set to enhanced mode)
{
   // Program following registers
   0xB34 4
                                // Set display 0 channel to surface 4
   0xB30 0
                                // Surface offset for display 0 channel
   0xE30 0
                                // Display 0 view port start
   0xA40 0
                                // Surface 4 base address
                               // scaler and display priority
   0xD80 1
   0xD90 _ 0
                                // Disable color key
   0xDF8 0
                                // Clear display FIFO status
                                // Disable deferred 0
   0xCF0 0
   0xCF4 _ 0
                                // Disable deferred 1
   0xee0 0
                                // Display 0 sync selector
Program E80 - E94 // Timing parameters for ECRTC 0
                               // View port end
Program 0xE34
Program 0xA44
                                // Surface 4 stride and format
Program 0xD30
                                // Display 0 format
Program 0xDF5
                                // Double scan control
                  // Turn on ECRTC
0xDF4 5
}
Program 0x90, 0x91, 0x92 // Dot clock
Clear screen if needed
0x3C4.1 bit 5 0 // Turn on screen
Exit
```


6.4 Driver Functions

The lowest-level driver for the SM3110 is responsible for these functions:

- device detection
- configuration
- memory-mapped control addressing
- memory address allocation
- physical buffers for FIFO's
- Iinear/segmented mode
- cursor control
- icon programming

Each of these topics is presented in this section.

6.4.1 Device detection

This PCI interrupt routine is called to detect the SM3110 as a PCI/AGP device:

Sample code : Sense presence of SM3110

```
SenseHardware
                proc near
                             ; Search from 0
   mov si, 0
SH_FindPCIDevice:
                            ; =4831h, Device ID for SM3110 board
       cx, DEVICEID
   mov
       dx, VENDORID
                            ; =8888h,Vendor ID for Silicon Magic
   mov
   mov ax, 0B102h
                            ; Find device command
         1Ah
                             ; PCI interrupt
   int
   jnc
         SH_Found
                             ; Found
         ah, 86h
                             ; Error code in ah - not found
   cmp
          SH_NotSiMagic
                             ; Search all slots and not found
   je
SH FindNextSlot:
   inc
         si
                             ; Search next slot
   cmp
         si,256
   jb
          SH_FindPCIDevice
                             ; Search all slots and not found
SH_NotSiMagic
                             ; means fail
        ax,ax
   xor
   ret
SH Found:
   mov
         wPCIBusAddress, bx ; bx=bus/device number, save in global
         ax, 1
                            ; means successful
   mov
   ret
SenseHardware
               endp
```


6.4.2 Device configuration

Once the SM3110 device is detected, the following routine is used to read the PCI/AGP configuration registers.

Sample code: Read PCI/AGP Configuration register

```
ReadPCIDword
                 proc
                        near
;;Entry:
                 ax=index
                 eax=double word be read
;;Return:
         bx, wPCIBusAddress
                                       ; get from SenseHardware sub-routine
    mov
    mov
          di, ax
                                       ; index
          ax, OB10Ah
                                       ; AH:PCI function ID, AL:Read a dword
    mov
          1Ah
                                       ; PCI interrupt, return in ECX
    int
    mov
          eax,ecx
                                       ; return in EAX
    ret
ReadPCIDword
                 endp
```


6.4.3 Memory-mapped control address

The last 64KB of the local memory address space is reserved for memory-mapped 2D/3D control registers.

6.4.3.1 Enable/Disable access

To prevent inadvertent access to the enhanced memory-mapped control registers, a specific sequence must be written through the VGA Graphics Controller index/data port to enable access.

Sample code: Enable/Disable memory-mapped control register access

```
EnableIOMap
                proc
                      near
          dx,3ceh
   mov
          ax,5380h ;write S into reg 80h
   mov
         dx,ax
   out
   mov ax,4D80h ;write M into reg 80h
        dx,ax
   out
   ret
EnableIOMap
                endp
DisableIOMap
                proc near
          dx,3ceh
   mov
          ax,5280h
                      ;write L into reg 80h
   mov
          dx,ax
   out
   ret
DisableIOMap
                endp
```

Since PCI devices will be allocated with different memory addresses, the enable code is programmed just once for insurance, and the disable code should never be used.

6.4.3.2 2D Command Port selector

Use the same way as above to set a variable to the base address of the memory-mapped control register region. This is also the base address of the 2D control region.

Sample code: Get the 2D command port selector

GetPointer	_MemoryMapCtl proc	near	
call	GetLocalMemoryBase		
mov	eax, PhyVRAMAddress		
add	eax, 1FF0000	;32M-64K	
mov	PhyCmdPortAddress,eax	;save as global	
mov	edx, 10000h	;size=64K	
call	GetSelector		
mov	CmdPortSelector, ax	;save as global variable	
ret			
GetPointer	_MemoryMapCtl endp		

After calling GetPointer_MemoryMapCtl routine during initialization, the following macros can be used to read/write memory-mapped control registers at any offset.

```
ReadMemoryMapCtl Macro offset,data
    mov es, CmdPortSelector
    mov di,offset
    mov data,es:[di]
    Endm
WriteMemoryMapCtl Macro offset,data
    mov es, CmdPortSelector
    mov di,offset
    mov es:[di], data
    Endm
```


6.4.3.3 2D Image Data Port selector

The 2D Image Data FIFO is located at C000H from the memory mapped control address. Instead of using the 2D Command port selector with offset C000H, it is easier to understand allocating another global variable (selector) to address the area directly.

Sample code: Get the 2D image data FIFO port selector

```
GetPointer_ImagePort
                      proc
                            near
   mov eax, PhyCmdPortAddress
         eax, OCOOOh
                            ; last 16K of command port
   add
         edx, 4000h
                            ;size=16K
   mov
   call GetSelector
   mov
         ImagePortSelector, ax ;save as global variable
   ret
GetPointer_ImagePort
                     endp
```

After calling GetPointer_ImagePort routine at initialization period, the following macros can be used to write data to 2D image data FIFO.

```
WriteImagePort Macro offset,data
  mov es, ImagePortSelector
  mov di,offset
  mov es:[di],data
  endm
```

6.4.3.4 VGA I/O Ports

Program the VGA I/O port (3Cxh, 3Bxh or 3Dxh) by writing index/data pairs.

Sample Code: Program VGA I/O port

```
VGAIOport proc near

mov dx, port ; 3Cxh, 3Bxh or 3Dxh

mov al, index

out dx, al

inc dx

mov al, data

out dx, al

ret

VGAIOport endp
```

Programmer's Reference

6.4.3.5 A0000H-based 128K VGA memory

For 16-bit real mode, use A0000H as the segment. A0000H:0 points to screen at (0,0) and A0000H:C30H points to pixel at (48,3) for 1024x768x256colors mode.

For 16-bit protected mode, allocate a selector, set its base to A0000H and set its limit to dwVRAM-Size. Then use the selector:offset pair to access video memory (see also the following section, Local Memory Address Space).

6.4.3.6 PCI configuration space

In addition to calling subroutine ReadPCIDword, the PCI configuration register can also be accessed from the offset 0F00H to the memory-mapped control selector. For example,

mov ax,30h
call ReadPCIDword ;return in eax

has the same effect as

mov fs, CmdPortSelector mov eax, fs:[0F30h]

6.4.4 Memory Address Allocation

Section 6.2 described the address space of the SM3110 and all of its subdivisions. This section describes how each of these is accessed by software.

6.4.4.1 Local memory address space

The SM3110 Address Space occupies four contiguous 32MB address ranges (of the total 4GB PCI address space). The Local Memory Address Space is the lower 32MB of the 128MB range. The PCI address of the local memory address space is located in the BASE 0 index of the PCI configuration register. Use the following routine to get this physical address.

Sample code: Get the physical address of the base of local memory.

GetLocalM	emoryBase	proc	near	
mov	ax, 10h			;Base 0 physical address index
call	ReadPCIDword			
and	eax,0FF00000	0h		;align
mov	PhyVRAMAddre	ss,eax		;save in global,will be used later
ret				
GetLocalMe	emoryBase	endp		

6.4.4.2 Display (video) memory address

The display (video) memory starts from the beginning of the local memory address, with a physical memory size which can be set in a global variable by the following routine.

Sample code: Get display memory size

```
GetVideoMemSize proc
                       near
    xor eax,eax
    mov dx.3ceh
    mov
       al,8fh
                                   ;BIOS save bank size during POST
        dx,al
    out
    inc
          dx
                                   ;al has size in 64k units
    in
          al,dx
    shl
        eax,16
                                   ;size in eax
   mov dwVRAMSize,eax
                                   ;save in global, will be used later
   ret
GetVideoMemSize endp
```

To access the local memory, the physical address needs to be converted to a linear/logical address:

Sample code: Convert Physical to Linear Address

```
ConvertPhysicalToLinearAddress proc
                                                  near
;;Entry: eax=physical address, edx=size
;;Return: eax=linear address
    shld ebx, eax, 16
         cx,ax
    mov
                                     ;BX:CX has base physical address
   mov edi,edx
   dec
          edi
    shld esi,edi,16
                                     ;SI:DI has limit
          ax,0800h
                                     ; convert physical to linear address.
    mov
                                     ;DOS Protected Mode Interface (DPMI)
          31h
    Int
                                     call, return BX:CX = linear address
          eax,ebx,16
    shrd
                                     ;eax= linear address
    mov
          ax,cx
    ret
ConvertPhysicalToLinearAddress endp
```

For 16-bit programs, data is pointed to by segment:offset pair (in real mode) or by selector:offset pair (in protected mode).

6.4.4.3 16-bit Real Mode Addressing

In 16-bit real mode (i.e., DOS environment), data is pointed to by segment:offset pair. For example, to access memory at B8004h, program as follows:

Sample code: Read/Write data to segment:offset in 16-bit real mode

mov	ax,0B000h	;segment or B800h
mov	es, ax	
mov	di, 8004h	;offset or 4h

Then use es:[di] to read/write data.

6.4.4.4 16-bit Protected Mode Addressing

In 16-bit protected mode (i.e., Microsoft Windows environment), data is pointed to by selector:offset pair. The segment needs to be converted to a selector by DOS Protected Mode Interface (DPMI) calls.

Sample code: Get a selector in 16-bit protected mode

```
GetSelector
                        near
                 proc
;; Entry:
                 eax= dwPhysAddr, edx=dwSize
                 ax=selector assigned
;; Return:
        dwSize, edx
                              ; save in stack or global variable
    mov
          dwPhysAddr,eax
                              ;save in stack or global variable
    mov
          ax,ax
    xor
          cx,1
    mov
                               ;count
                              ;DPMI, allocate an LDT selector in ax
    int
          31h
    mov
          wSelecotr,ax
                              ;save selector in stack or global variable
          eax, dwPhysAddr
    mov
          edx, dwSize
    mov
          ConvertPhysicalToLinearAddress
                                                  ;return eax=linear addr
    call
    shld
          ecx,eax,16
    mov
          dx,ax
                                     ;CX:DX = linear address
          bx,wSelector
    mov
                                     ;BX=selector
          ax,7
    mov
    int
          31h
                                     ;DPMI, set selector base.
          edx,dwSize
    mov
    dec
          edx
                                     ;CX:DX = limit
    shld
          ecx,edx,16
          ax,8
    mov
           31h
                                     ;DPMI, set selector limit
    int
                                     ;return value in ax
          ax, wSelector
    mov
    ret
GetSelector
                   endp
```


6.4.4.5 32-bit Mode Addressing

For 32-bit code, since all memory is within the 4GB logical space, the linear address points to the proper location of the memory.

By combining with 16-bit protected code, use the following routine to get display (video) memory pointer:

Sample code: Get the Video Memory pointer

```
GetPointer_VideoMemory proc
                             near
    call GetLocalMemoryBase
    call GetVideoMemSize
   mov eax, PhyVRAMAddress
   mov edx, dwVRAMSize
ifdef USE_32BIT
    call ConvertPhysicalToLinearAddress
   mov dwVRAMLinearAddress,eax
                                         ;save as global variable
else ;;USE_16BIT protected mode
   call GetSelector
   mov wVRAMSelector,ax
                                          ;save as global variable
endif
   ret
GetPointer_VideoMemory endp
```


After calling the GetPointer_VideoMemory routine at initialization time, the following macros can be used to read/write display (video) memory:

Sample code: Read/Write Video Memory Ifdef USE_32BIT offset,data ReadVideoMemorv Macro mov edi, dwLinearAddress_VideoMemory edi,offset add data,[edi] mov Endm WriteVideoMemory Macro offset,data edi, dwLinearAddress_VideoMemory mov add edi,offset [edi],data mov Endm Else ;;USE_16BIT protected mode ReadVideoMemory offset,data Macro es, wVRAMSelector mov mov di, offset data,es:[di] mov Endm WriteVideoMemory Macro offset,data mov es, wVRAMSelector mov di, offset es:[di],data mov Endm

Endif

Note: For simplicity, only 16-bit protected mode code will be used for the remainder of this document.

6.4.5 Physical Buffers for FIFOs

When programming or addressing data in the 3D command, 2D command and 2D image data FIFO areas, the SM3110 chip hardware will first decode the address and transfer data to the physically allocated buffer and then execute the command or retrieve data in a FIFO order. These buffers must be physically allocated somewhere in the 4MB display memory. By convention: use the last 128KB for these buffers

- 3D command FIFO buffer: 64KB
- 2D image data FIFO buffer: 32KB
- 2D command FIFO buffer: 4KB
- Cursor Deferred control buffer: 1KB
- Display Deferred control buffer: 1KB
- Cursor buffer: 2KB
- Icon: 2KB
- others

For example, consider the 2D command FIFO. The 2D command FIFO can only be accessed within a 4KB range: offsets +8000H to +9000H within the Control Address Space. However, the SM3110 can actually access up to 32KB by using addresses in this range repeatedly. The following code shows how this is done (in this example only 16KB is accessed).

Sample code: Set buffer locations for FIFOs

```
GetFIFOBufferLocation proc near
   call GetLocalMemoryBase
   call GetVideoMemSize
   mov eax, PhyVRAMAddress
   add eax, dwVRAMSize
   sub eax, 20000h ;reserved last 128K for FIFO buffer
   mov dwPrivatePhyAddr, eax;save as global
   ret
GetFIFOBufferLocation endp
```

Please refer to "Equates" section. Here is code to set buffer addresses:

```
SetBufferBase_2DCmdFIF0
                         proc
                                near
    call GetFIFOBufferLocation
    add
          eax, CMDFIFO_OFFSET
          eax, ECMDFIFOSIZE
    or
         fs, CmdPortSelector
    mov
    mov
          fs:[CMDBufferBaseAddress],eax
    ret
SetBufferBase 2DCmdFIFO endp
SetBufferBase_2DImageFIFO proc near
    call GetFIFOBufferLocation
   add
          eax, IMGFIFO_OFFSET
          eax, EIMGFIFOSIZE
    or
          fs, CmdPortSelector
    mov
          fs:[IMGBufferBaseAddress],eax
    mov
    ret
SetBufferBase_2DImageFIF0
                              endp
```


6.4.6 Linear/Segmented mode

Display memory can be configured as a large contiguous address space (linear mode) up to 32MB, or as multiple 64KB segments (segmented mode). For linear mode, it is easy to access the memory by 32-bit linear pointer or selector:[32-bit offset]. Usually in 16-bit programs with 16-bit offsets such as BX,SI or DI, the maximum value is 64KB. To access memory beyond 64KB requires setting the memory bank.

Sample Code: Program VGA Memory bank

```
GetVGAMemoryBank proc
                       near
   mov dx, 3CEh
   mov
          al, 84h
                              ;bank offset register index
   out dx, al
   inc
        dx
   in
          al, dx
                              ;bit 6:1=bank in 64K unit
   and
          ax,7Fh
                              ;bit 7=1 for packed pixel mode banking mode
         ax,1
   shr
   ret
                              ;return ax=bank #
GetVGAMemoryBank endp
SetVGAMemoryBank proc near
                             ;ax=bank #
   add
          al, al
                              ; bit 6:1=bank in 64K unit
          al, 80h
                              ;bit 7=1 for packed pixel mode banking mode
   or
   mov
        dx, 3CEh
        ah, 84h
                             ;bank offset register index
   mov
          dx, ax
   out
   ret
SetVGAMemoryBank endp
```

Thus, after programming

mov ax,1
call SetVGAMemoryBank

wVRAMSelector:[0] points to the pixel at (0,64) instead of (0,0) in 1024x768x256color mode. Obviously, accessing memory in linear mode is easier, simpler and recommended.

6.4.7 Cursor control

The SM3110 supports both monochrome and color cursors. The cursors can be turned on and off. The turning on and the positioning of the cursor can be synchronized with VBLANK.

6.4.7.1 Cursor Format

The monochrome cursor can be up to 256 x 256 pixels in size. It is defined as two 1-bit-per-pixel (bpp) masks: the AND mask and the XOR mask. The cursor display logic is described below.

AND Mask XOR Mask Result

0	0	Background Color (BLACK)
0	1	Foreground Color (WHITE)
1	0	Screen Pixel
1	1	NOT Screen Pixel

The color cursor can be up to 32 x 32 pixels. It is defined as a one-bit-per-pixel AND mask and a 16-bit-per-pixel color bitmap which is the XOR bitmap. The cursor display logic is described below.

AND Mask XOR Bitmap Result

0	Cursor Pixel	Cursor Pixel
1	Cursor Pixel	Screen Pixel XOR Cursor Pixel

6.4.7.2 Cursor data buffer and surface

The cursor pattern is stored in the offscreen memory. Cursor buffer allocation is mentioned in Section 6.4.5, Physical Buffers for FIFOs. A surface descriptor has the physical base address of the cursor in the offscreen memory. This example shows how to prepare buffer before setting cursor.

Sample code: Set buffer location for cursor and deferred control

```
;fs= CmdPortSelector: selector points to the register base address
SetBuffer_Cursor proc
                       near
          eax, dwPrivatePhyAddr
                                     ;get from GetFIFOBufferLocation
    mov
    addeax, CURSOR_OFFSET
          eax, PhyVRAMAddress
                                     ;relative to local memory base
    sub
          dwCursorBufferOffset,eax offscreen to load the cursor pattern,
    mov
                                     save as global
          fs:[CURSOR0SURFACE],eax
                                     ;surface descriptor base
    mov
          fs:[ChCurOffsets],0
                                     ;offsets into cursor surface, maybe !=0
    mov
                                     if clipped
          fs:[ChCurSIndex],CURSOR0SURFACEINDEX
                                                         ;set cursor surface
    mov
                                     descriptor index
    ret
SetBuffer_Cursor endp
```


6.4.7.3 Set Monochrome Cursor data

For monochrome cursor, the cursor source (i.e., from Windows) is specified as two 1 BPP bitmaps, the AND and XOR masks. SM3110 defines the cursor surface as 1 BPP format, and sets the stride to 2 times the cursor width. These two masks are written to the cursor surface buffer as interleaved words with the AND mask followed by the XOR mask.

Following example sets a monochrome cursor with size of 256 x 256 (the maximum possible size). Note that the cursor surface stride is fixed at 256 pixels (2 BPP).

Sample code: Set Monochrome cursor

```
;fs= CmdPortSelector: selector points to the register base address
;ds:[esi] points to the cursor pattern, 512 bytes of AND mask followed by 512
                                      bytes of XOR.
SetMonochromeCursor
                        proc near
          es, wVRAMSelector
    mov
          edi, dwCursorBufferOffset
                                             ;es:[edi] points to the offscreen
    mov
                                             to load the cursor pattern.
           fs:[CursorFormat],CURSOROFF
                                             ;turn off cursor
    mov
           qdwCursorFormat, CURSOR1
    mov
                                             ; global variable to turn on cur-
                                             sor later
    mov
          eax,(256*2)
                                     ;stride*2 - only for mono cursor
    or
           eax, BPP1 shl 20; surface is 1 BPP
          fs:[CURSOR0SURFACE+4],eax
                                             ;set stride and format
    mov
                                             ; count of rows to handle
    mov
          ecx,64
loop_nextrow:
          bx,4
    mov
loop_in1row:
          ax,ds:[esi+512];load XOR mask
    mov
          eax,16
                                             ;transfer to high bits
    shl
    loadw
                                             ;load AND mask ls 16 bits
                                             ;save AND & XOR masks in off
    stosd
                                             screen memory
    dec
          bx
    inz
          loop_in1row
    add
          edi,256*2/8 - 16
                                            ;offset into next row
    loop
          loop_nextrow
    ret
SetMonochromeCursor
                        endp
```

Note: The cursor is now set and needs to be turned on and positioned. The monochrome cursor can be a maximum of 256 x 256 pixels. If the given cursor size is smaller, the cursor pattern is loaded into the top left corner of the cursor surface and the viewport adjusted to display the cursor. The CursorPositionStarts and CursorPositionEnds are set based on the cursor width and height; the desired portion of the cursor surface is displayed.

6.4.7.4 Set Color Cursor data

For color cursor, the cursor source (i.e., from Windows) is specified as a 1 BPP AND mask and a color bitmap which can be 8, 16 or 24 BPP. SM3110 defines the cursor surface as a 16 BPP format with the desired stride in pixel units. The color pixels and the AND mask are combined into 16-bit pixels with the most significant bit containing the AND mask and the remaining 15 bits containing RGB value with a 5-5-5 format. The resulting 16-bit pixels are written into the cursor surface.

The cursor size is 32x32 for this example, the maximum possible size for color cursors. Assume the current mode is 16 BPP, RGB 5:6:5 mode. The given cursor definition has 128 bytes of monochrome bitmap (the AND mask) and 2KB of color bitmap (the XOR component). The color cursor surface stride has to be 32 pixels (16 BPP).

Sample code: Set Color cursor

```
;fs= CmdPortSelector: selector points to the register base address
;ds:[esi] points to the cursor pattern,128 bytes of AND mask followed by 2048
                                       bytes of color bitmap.
SetColorCursor
                                near
                  proc
           es, wVRAMSelector
    mov
           edi, dwCursorBufferOffset ;es:[edi] points to the offscreen to
    mov
                                       load the cursor pattern.
           fs:[CursorFormat],CURSOROFF
                                              ;turn off cursor
    mov
           gdwCursorFormat, CURSOR16 ; global variable to turn On cursor later
    mov
    mov
           eax,32
                                       ;stride
           eax, BPP16 shl 20
                                       ;surface is 16 BPP
    or
           fs:[ CURSOR0SURFACE+4],eax
                                              ;set stride and format
    mov
                                       ;count of words to handle
           ecx,32*2
    mov
           ebx,128
                                       ; init. offset to color bitmap
    mov
OLOOP:
                                       ;load AND mask
           ax,ds:[esi]
    mov
           eax,16
                                       ;and mask in MS 16 bits
    rol
           dx,16
                                       ; inner loop count
    mov
@@:
           ax,ds:[esi+ebx]
                                       ;load color component
    mov
           ax,6
                                       ; convert 565 to 555, discard LS Green
    rcr
                                       bit
    rol
           ax,5
                                       ;prepare to load AND mask in MS bit
    rcl
           eax,1
                                       ;get AND mask bit into carry
                                       ;rotate into MS bit with 555 color
    rcr
           ax,1
                                       ; offset to next pixel of color bitmap
    add
           ebx,2
                                       ;store AND mask and color component into
    stosw
                                       offscreen
    dec
           dx
                                       ;process 16 pixels
    jnz
           @B
           esi,2
                                       ;point to next word of AND mask
    add
    loop
           OLOOP
    ret
SetColorCursor
                  endp
```


Note: The cursor is now set and needs to be turned on and positioned. The color cursor size can be a maximum of 32 x 32 pixels. If the given cursor size is smaller, the cursor pattern is loaded into the top left corner of the cursor bitmap and the viewport adjusted to display the cursor. The CursorPositionStarts and CursorPositionEnds are set based on the cursor width and height; the desired portion of the cursor surface is displayed. The 24 BPP, RGB 888 bitmaps are converted to a 16-bit, 555 format by packing the most significant 5 bits of the red, green and blue components. If the color depth is 8 BPP, the RGB values for each color index (pixel) are converted to an RGB 555 word. No conversion is necessary for 16-bit RGB 555 bitmaps.

6.4.7.5 Cursor Deferred control

To avoid the tearing or jumping of the cursor image, all writes to the cursor registers are recorded into the Deferred Cursor Buffer and rewritten during VBLANK. The immediate register address, with encoded byte enables followed by register data, is recorded. The immediate registers are updated with the recorded data during VBLANK. Macros LDAB, LDAW and LDAD are used to load the deferred offsets with encoded byte enables. These macros are defined in the "Equates" section.

Sample code: Set buffer location for cursor and deferred control

```
;fs= CmdPortSelector: selector points to the register base address
SetBuffer_CursorDeferredCtl
                              proc
                                     near
          eax, dwPrivatePhyAddr
                                       ;get from GetFIFOBufferLocation
    mov
    add
          eax, CURDEFERRED_OFFSET
          eax, PhyVRAMAddress
                                      ;relative to local memory base
    sub
          dwCurDeferBufferOffset,eax ;offscreen to load the cursor deferred
   mov
                                       (addr,data) pairs
    ret
SetBuffer_CursorDeferredCtl
                              endp
```

Usually SM3110 uses the "Deferred control pointer 0" as the cursor deferred control pointers. To use the deferred control, first check if the deferred control status is replaying. When idle, reset the read pointer to the buffer allocated above, write the (command address, value) pairs to the buffer, then update the write pointer to the address of the last pair. Finally, enable the replay bit in the status register. During the next VBLANK period, the SM3110 will get the data from the deferred read pointer and execute the 'command' with the following 'value'. The read pointer will be automatically updated by the hardware after the data was read. It will not stop until the read pointer matches the write pointer. An example is shown in the next section of "Set Cursor Position".

6.4.7.6 Set Cursor Position and Turn Cursor On

The cursor has been previously turned off and a new cursor shape has been set. The cursor display and position parameters have to be set during VBLANK to avoid tearing or jumping of the cursor. This is accomplished by writing to the Deferred buffer and enabling replay; and the real register updates occur durring VBLANK. The cursor position can be set independently if the cursor was already on.

The cursor position and display size can be controlled, along with offsets which enable partial cursors to be displayed at the left and top edges of the screen. The cursor surface descriptor is set up for the base address, format and stride. The (x,y) offsets are set along with the (x,y) position of the top left corner of the cursor. The (x,y) offsets are set to (0,0) if the cursor is fully visible. Note that the cursor position (x,y) can only be positive numbers. To enable partial cursor to be visible at the left or top edges of the screen, the cursor position x or y is set to 0. The corresponding x or y offset, the portion of the cursor not visible in pixel units, is set in the offset register. The cursor format has to be set for the display portion along with the extents.

Sample code: Set Cursor Position and Turn Cursor On

```
;fs= CmdPortSelector: selector points to the register base address
;Cursor height and width are assumed 32x32
;Deferred Control buffer in the offscreen memory, selector es points to the
                                      screen base .
;variables gCursorX/Y is cursor location, gCursorHotX/Y is hot spot inside
                                      cursor,
;variables ScreenWidth/Height is curren screen dimension.
MoveCursor
                 proc
                               near
;read Deferred control status - disarms Deferred control replay
@@:
          al,fs:[CursorReplayStsReq]
                                         ;wait while replay active
    mov
    test
          al, REPLAYACTIVE;
    jnz
          @B
                                          ;skip to load cursor if inactive
          edi, dwCurDeferBufferOffset
                                         ;physical buffer reserved for
    mov
                                         deferred control
    mov
          fs:[CursorReplayPtr],edi
                                         ;Reset replay pointer
          es, wVRAMSelector
                                      ;es:[edi]=offscreen for deferred control
    mov
          eax, gdwCursorFormat; CURSOR1/16
    mov
    LDAD
          ebx,CursorFormat;
          es:[edi],ebx
                                      ; record reg address and data into
    mov
                                      deferred buffer
          es:[edi+4],eax
                                      ;turn on mono or color cursor
    mov
    add
          edi,8
;;clip cursor at Y axis
          bx,bx
                                      ;assume cursor yoffset = 0
    xor
          cx,32
                                      ;assume extent = 32
    mov
                                      ;ax = screen coordinate of cursor
    mov
          ax,qCursorY
                                      ;correct for hot spot
                 ax,qCursorHotY
    sub
          clipcursorY_bottom
                                      ; Is adjusted coordinate negative?
    jqe
    add
          cx,ax
                                      ;yes, shorten extent
    sub
          bx,ax
                                      ;advance yoffset
    xor
          ax,ax
                                      ;set screen coordinate to zero.
    Jmp
                 clipcursorY_done
```


clipcursorY_bottom: idx = top of cursormov dx,ax add dx,cx idx = bottom+1 of cursor ;dx = # pixels cursor is clipped on bottom sub dx,ScreenHeight clipcursorY_done jle ; If 0 or neg, cursor is completely visible sub cx,dx ;adjust extent clipcursorY_done: shl eax,16 ;accumulate y position shl ebx,16 ;offset ecx,16 ; and y end in upper 16 bits shl ;;clip cursor at X axis bx,bx ;assume cursor xoffset = 0 xor mov cx,32 iassume extent = 32;ax = screen coordinate of cursor mov ax,gCursorX sub ax,gCursorHotX ; correct for hot spot clipcursorX_right ; Is adjusted coordinate negative? jqe ;yes, shorten extent add cx,ax sub bx,ax ;advance xoffset xor ax,ax ;set screen coordinate to zero. Jmp clipcursorX_done clipcursorX_right: dx,ax idx = lhs of cursormov dx = rhs + 1 of cursor add dx,cx dx,ScreenWidth ;dx = # pixels cursor is clipped on right side sub ; If 0 or neg, cursor is completely visible jle clipcursorX_done sub cx,dx ;adjust extent clipcursorX_done: ecx,eax;cx = (right,bottom) add ; mov es:[edi],edx ;record reg address and data into deferred buffer mov es:[edi+4].eax ; set cursor position top left x,y add edi,8 LDAD edx,ChCurOffsets; es:[edi],edx ;record reg address and data into deferred mov buffer es:[edi+4], ebx ;set cursor offsets mov add edi,8 LDAD edx,CursorPositionEnds; mov es:[edi],edx ;record reg address and data into deferred buffer es:[edi+4], ecx ;set bottom right position mov add edi,8 sub edi,4 ; go back to the last valid address fs:[CursorRecordPtr],edi ;set cursor write base pointer mov fs:[CursorReplayCtlReg],ENABLEREPLAY ;Enable replay at next VBLANK mov ret MoveCursor endp

The cursor will be displayed at the next VBLANK.

6.4.8 Icon

The SM3110 supports a hardware icon.

Sample code: Set icon buffer

```
;fs= CmdPortSelector: selector points to the register base address
SetBuffer Icon
                proc
                       near
        eax, dwPrivatePhyAddr
                                    ;get from GetFIFOBufferLocation
   mov
   addeax, ICON_OFFSET
   sub eax, PhyVRAMAddress
                                    ;relative to local memory base
   mov
          dwIconBufferOffset,eax
                                    ;offscreen to load the icon pattern,
                                    save as global
   mov
        fs:[ICONSURFACE],eax
                                    ;surface descriptor base
                                    ;offsets into icon surface
         fs:[ChIconOffsets],0
   mov
          fs:[ChlconSIndex],ICONSURFACEINDEX
                                                 ;set icon surface descrip-
   mov
                                    tor index
   ret
SetBuffer_Icon
                 endp
```

Programming for the icon is similar to the cursor functions in the previous section. Follow those routines to set Monochrome/Color Icon to the allocated icon buffer, set icon position and turn on icon, except use "IconChFormat/IconChPositionStarts/ChIconOffsets/IconChPositionEnds" instead of "CursorFormat /CursorPositionStarts/ChCurOffsets/CursorPositionEnds" respectively.

6.5 2D Functions

6.5.1 Display Operations

The SM3110 controller provides a very powerful and flexible mechanism for defining surfaces and displaying multiple surfaces via channels. Multiple surfaces can be displayed with alpha blending and color keying.

The display memory can be logically viewed as surfaces. The surface descriptors define surfaces. Each descriptor has the base address of the surface (in physical memory), the stride (in pixels) and the pixel size (in bytes). Surface stride has to be a multiple of 16 pixels, and the base address has to start on a 4-byte boundary. The SM3110 allows 16 descriptors, 00H through 0FH. The 2D engine or the CPU can render into any surface. It is possible to perform inter-surface BitBLTs. Surfaces are displayed by assigning them to one of seven(7) channels: two cursors, one icon, two displays and two scalers. Surface descriptors 00 and 0Fh are reserved for cursor channels 0 and 1, descriptor 01h is reserved for the icon channel and descriptors 04h and 0Eh are reserved for display channels 0 and 1 by BIOS and the display driver.

There are two sets of cursor/scaler/display: for output channel 0 and output channel 1. The cursor/ scaler/display set for output channel 0 is associated with the LCD output, and the cursor/scaler/ display set for output channel 1 is associated with the CRT. A surface can be attached to a display channel. The attached surface is displayed on the screen through a viewport located at a specified position. The screen resolution is based on the mode currently set. The pixel format and size have to be specified for each channel. The viewport location and its extents (size) can be specified. It is thus possible to display any portion of a surface on the viewport, clipped at the left and top edges. The X,Y offsets become the origin into the surface bitmap that is displayed in the viewport. With the X,Y offsets set to 0,0, the bitmap is displayed with the top left corner coincident with the top left corner of the viewport. Figure 6-6 below shows an example of a surface being displayed by a display channel.

The icon channel is used to display ICON bitmap when LCD is powered down. The cursor channel is provided for hardware cursor support which is described in the previous section. The surface associated with the scaler channel can be of type RGB or YUV, and can be stretched or shrunk. Only RGB surfaces can be attached to display channels. The scaler channel can be used as a blend or as key control for the display channels. Certain modes can display only two channels due to bandwidth and/or memory limitations.

By convention, when an enhanced mode is set, surface 4 is allocated by the BIOS to describe the bitmap for that mode. This surface, the primary surface, is attached to a display channel. The surface 0 is reserved for the cursor channel. The base addresses for the primary surface and the cursor surface can be obtained from making extended BIOS calls. During mode setting, the cursor and scaler channels are turned off by programming the channel format to 0. The channels can be turned on later by programming with a legal format.

The surfaces attached to scaler and display channels can be displayed on the screen simultaneously. The overlay priority control register can specify the display order of the surfaces. The scaler channel can be assigned an order as foreground for display, or as a background surface which can be blended or colorkeyed with the foreground display channel. The blending can be constant defined by the Mix control register. The keying can be on the source (foreground channel) or the destination (background channel). If source keying is selected, foreground channel pixels having the key color display pixels from the background channel; the foreground channel

pixels not having the key color are displayed everywhere else. If destination keying is selected, foreground channel pixels corresponding to key color pixels in the background channel are displayed. The background channel pixels are displayed everywhere else in the overlapping area. If a control channel is specified for keying, it takes precedence over the key control registers. Figure 6-7 shows the overlay and mix control. In certain modes, it is possible to have only two channels displayed due to memory and or bandwidth limitations.

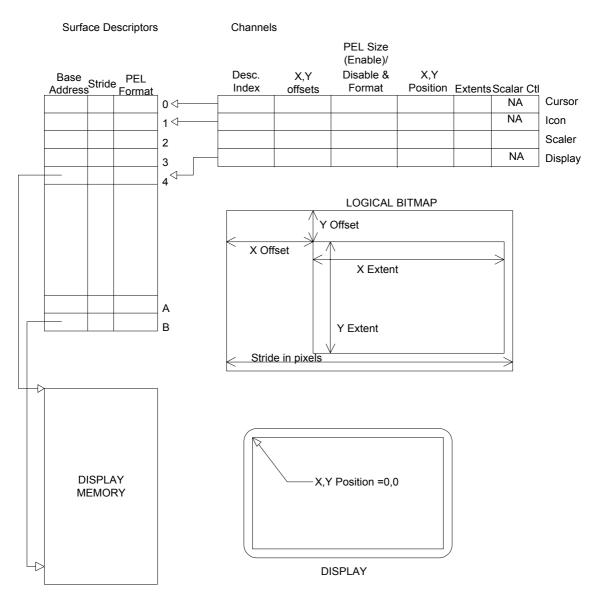


Figure 6-6. Surface Definition

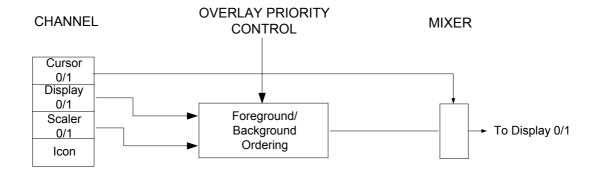


Figure 6-7. Overlay Priority and Mixing

This section provides examples to perform common display operations. These are explained as specific examples for clarity, but could be combined in real applications.

- Define surfaces.
- Channel controls assign surface
- Channel controls set location, size, scale factors etc.
- Enable/disable a channel.
- Set Overlay priority.
- Set Back/Fore Mix control (blend and overlay).
- Query the scanline being displayed.

In all the examples, the writes to the display control registers are deferred and written during VBLANK. Writes to these registers are recorded into the Deferred Control Buffer and replayed during VBLANK. The immedate register address with encoded byte-enables, followed by register data, are recorded. Macros LDAB, LDAW and LDAD are used to load the deferred offsets with encoded byte-enables (these macros are defined in Section 6.14.2, Macros). This eliminates the undesirable tearing effects. A surface buffer attached to a channel can be swapped with a newly rendered surface without visual artifacts. It is appropriate to modify the controls via the immediate registers if the channel is disabled for display.

6.5.1.1 Define a Surface

This routine defines a surface given the base address, the bits per pixel and the stride in pixel units. The base address should be on a doubleword boundary, and the stride should be a multiple of 16-pixel units. The surface is uninitialized. Make sure that the surface entry being defined is not already assigned to any surface.

Sample code: Define a Surface

```
;fs selector points to the register base address
;the variable bitspixel has the BPP with the stride in surfacestride. The sur-
                                    face number is in surfacenum (0..F) and
                                    surface
; base address is in the variable surfacebase.
Defineduce
```

DefineSurf	ace proc near		
mov	ax,NEXTSURFACE	;calculate the	e surface
mul	ax,surfacenum	;register add	ress
mov	bx,ax	;	
mov	eax,surfacebase	;load surface	base address
mov	fs:[bx+SurfaceBaseAddress]	,eax	;set base address for given
		surface	
mov	ax,bitspixel	;load bits per	r pixel
shl	eax,20	;move to upper	r bits
mov	ax,surfacestride	;load surface	stride
mov	fs:[bx+SurfaceStrideFormat],eax	;set stride and format
ret			
DefineSurf	ace endp		

6.5.1.2 Channel Controls - assign surface

The given surface is assigned to the channel 0,1,2 or the control channel. In a typical operation, one surface assigned to a channel is being displayed, and a second surface is being rendered into or composed. The surfaces are then flipped to display the newly rendered surface. The surface flip needs to occur during VBLANK to avoid undesirable screen artifacts. This is accomplished by recording the writes to the Display Control registers into the Deferred Control Buffer and replaying the register writes into the registers during VBLANK.

Sample code: Display Deferred control

```
;fs selector points to the register base address
;the variable surfacenum has the Surface descriptor index of surface to be
;attached. The variable channelnum has the channel
;number, one of (CHANNELCTL, CHANNEL0, CHANNEL1, CHANNEL2).
;Variable PhyCmdPortAddress has the immediate register physical base
;address, add offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred
;Control; buffer in the offscreen memory.
;gs selector points to the physical screen base.
```


DisplayDeferredControl proc near edi,fs:[DisplayRecordPtr] ;load edi display write pointer mov ;read Display control status - disarms Deferred Display replay al,fs:[DisplayReplayStsReq] ;read status, disarm replay mov and al, REPLAYPENDING+REPLAYACTIVE ; al, REPLAYPENDING ;skip to add to Control buffer cmp RECORDLOADS ; if replay pending jz @@: mov al,fs:[DisplayReplayStsReq] ;else wait while replay active test al, REPLAYACTIVE : jnz @B ;skip to record writes if inactive edi,displayreplaybase ;set read and write pointers mov fs:[DisplayRecordPtr],edi ;set display write base pointer mov fs:[DisplayReplayPtr],edi ;set display read base pointer mov **RECORDLOADS:** sub edi,PhyCmdPortAddress ;edi has offset into buffer mov ax, NEXTCHANNEL ;calculate mul ax, channelnum ;register address offset for channel ; in ebx movzxebx,ax LDAB edx, ChannelIndex : add edx,ebx ; add to base or edx, PhyCmdPortAddress ;record reg address and data into deferred buffer mov gs:[edi],edx mov al, surfacenum ;load surface base number, displayed after next VBLANK mov qs:[edi+4],al ;set surface number add edi, (8-4) ;compute write pointer add edi, PhyCmdPortAddress ; mov fs:[DisplayRecordPtr],edi ;set display write pointer mov fs:[DisplayReplayCtlReg],ENABLEREPLAY;Enable replay at next VBLANK ret

DisplayDeferredControl endp

6.5.1.3 Channel Controls - Offsets & viewports location

The offsets, viewport location and the extents are set for a *display* channel. It is assumed that a surface has been previously assigned to this channel and is being displayed. Setting the offsets establishes the new origin into the surface being displayed. The viewport X,Y sets the location of the top left corner of the display viewport, and the extents sets the width and height of the display viewport. If the channel is being displayed, these parameters need to be set during VBLANK to avoid undesirable screen artifacts. This is accomplished by recording the writes to the Display Control registers into the Deferred Control Buffer and replaying the register writes during VBLANK. A *scaler* channel can be set in a similar manner along with the location and extents. This controls the stretch factor in the x and y directions.

Sample code: Channel control

```
;fs selector points to the register base address
;The variable channelnum has the channel number, one of (CHANNELCTL,
CHANNELO, CHANNEL1, CHANNEL2).
;Variable PhyCmdPortAddress has the immediate register physical base address,
add offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control
buffer in the offscreen memory.
;qs selector points to the physical screen base.
;Variables offsetx, offsety, viewx, viewy, and viewendx, viewendy contain the
offsets, viewport location starts and ends.
;The view location parameters are clipped to screen coordinates. The variable
sstride contains the stride of the surface
; sheight has the surface height.
ChannelControl
                 proc
                        near
    mov
           edi,fs:[DisplayRecordPtr]
                                          ;load edi display write pointer
;read Display control status - disarms Deferred Display replay
           al,fs:[DisplayReplayStsReg]
                                          ;read status, disarm replay
    mov
    and
           al, REPLAYPENDING+REPLAYACTIVE
                                             ;
           al, REPLAYPENDING
                                          ;skip to add to Control buffer
    cmp
           RECORDLOADS
                                          ; if replay pending
    jΖ
@@:
           al,fs:[DisplayReplayStsReg]
    mov
                                          ;else wait while replay active
           al, REPLAYACTIVE
    test
                                          ;
    inz
           @B
                                          ;skip to record writes if inactive
    mov
           edi,displayreplaybase
                                          ;set read and write pointers
           fs:[DisplayRecordPtr],edi
                                          ;set display write base pointer
    mov
    mov
           fs:[DisplayReplayPtr],edi
                                          ;set display read base pointer
RECORDLOADS:
                                          ; edi has offset into buffer
    sub
           edi, PhyCmdPortAddress
                                          ;calculate
           ax,NEXTCHANNEL
    mov
                                          ;register address offset for channel
    mul
           ax, channelnum
    movzx ebx,ax
                                             ;
           edx, ChViewPositionStarts
                                          ;load Channel View base
    LDAD
```


edx,ebx ;offset into desired channel add ;record reg address and data into edx, PhyCmdPortAddress or deferred buffer qs:[edi],edx mov ; ;load viewport x,y mov ax, viewy shl eax,16 ; ax,viewx mov ; qs:[edi+4],eax ;set viewport x,y mov edx,ChViewPositionEnds ;load Channel Extent Base LDAD add edx,ebx ;offset into desired channel edx, PhyCmdPortAddress ;record reg address and data into or deferred buffer mov qs:[edi+8],edx mov ax, viewendy ;load x,y ends shl eax,16 ax, viewendx mov gs:[edi+12],eax ;set x,y ends mov edx,ChannelOffsets ;load Channel offset Base LDAD ;offset into desired channel add edx,ebx edx, PhyCmdPortAddress ;record reg address and data into or deferred buffer gs:[edi+16],edx mov : ax, offsety ;load x,y offsets into the surface mov from top left corner shl eax,16 mov ax, offsetx ;set x,y offsets mov gs:[edi+20],eax if (Surface type YUV) { LDAD edx,Ch0UOffsets ;load Channel U offsets ;record reg address and data into edx, PhyCmdPortAddress or deferred buffer qs:[edi+24],edx mov ; ax, offsety ;load U offsety = offsety/2+sheight mov shr ax,1 ; add ax, sheight ; shl eax,16 ax, offsetx ;U offsetx = offsetx/2 mov shr ax,1 mov qs:[edi+28],eax ;set U offsets LDAD edx,Ch0VOffsets ;load Channel V offsets edx, PhyCmdPortAddress ;record reg address and data into or deferred buffer mov qs:[edi+32],edx ;load V offsety = offsety/2+sheight ax, offsety mov ax,1 shr ; add ax, sheight ; shl eax,16 ;


```
ax, offsetx
                                          ;V offsetx = (offsetx+stride)/2
    mov
    add
           ax,sstride
                                          ;
           ax,1
    shr
                                          ;
           gs:[edi+36],eax
                                          ;set V offsets
    mov
           edi,(40-4)
    add
                                          ;compute write pointer
} else {
           edi,(24-4)
    add
                                          ;compute write pointer
}
    add
           edi, PhyCmdPortAddress
                                          ;
    mov
          fs:[DisplayRecordPtr],edi
                                          ;set display write pointer
    mov
           fs:[DisplayReplayCtlReg],ENABLEREPLAY
                                                    ;Enable replay at next
                                                    VBLANK
    ret
ChannelControl
                  endp
```


6.5.1.4 Enable/Disable Channel Display

When a display channel is either enabled or disabled, the attached surface is either displayed or turned off. The disabling can be effected immediately by writing to the immediate registers. The enable needs to occur during VBLANK to avoid undesirable screen artifacts. This is accomplished by recording the writes to the Display Control registers into the Deferred Control Buffer and replaying the register writes during VBLANK. On enabling/disabling channels, the display FIFO controls have to be set.

Sample code: Enable/Disable Channel Display

```
;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add
                                      offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control
                                      buffer in the offscreen memory.
;qs selector points to the physical screen base.
;The variable channelnum has the channel number, one of (CHANNELCTL,
                                      CHANNELO, CHANNEL1, CHANNEL2).
; displayformat contains the format and bitdepth of the surface being dis-
                                      played, e.g. 16 BPP YUV 4.2.2.
; If the display channel is to be disabled, displayformat contains 0
EnableChannelDisplay
                        proc
                               near
    mov
          bx,NEXTCHANNEL
                                      ;calculate
    mul
          ax, channelnum
                                      ;register address offset for channel
    movzx ebx,ax;
          cl,displayformat;
    mov
          cl,0ffh
                                      ;turn on display
    test
          @F
                                      ;yes: skip to turn on display
    jnz
          fs:[bx+ChannelFormat],cl
                                      ;no turn off channel display
    mov
          DONE
    jmp
@@:
          edi,fs:[DisplayRecordPtr] ;load edi display write pointer
    mov
                                      ;read Display control status - disarms
                                         Deferred Display replay
          al,fs:[DisplayReplayStsReg];read status, disarm replay
    mov
          al, REPLAYPENDING+REPLAYACTIVE;
    and
    CMD
          al, REPLAYPENDING
                                      ;skip to add to Control buffer
    jz
          RECORDLOADS
                                      ; if replay pending
@@:
          al,fs:[DisplayReplayStsReq];else wait while replay active
    mov
          al, REPLAYACTIVE;
    test
    jnz
          @B
                                      ;skip to record writes if inactive
          edi,displayreplaybase
                                      ;set read and write pointers
    mov
          fs:[DisplayRecordPtr],edi ;set display write base pointer
    mov
          fs:[DisplayReplayPtr],edi ;set display read base pointer
    mov
```



```
RECORDLOADS:
                                      ; edi has offset into buffer
    sub
          edi, physicalbase
                                      ;load Channel format Base
   LDAB
          edx,ChannelFormat
                                      ;offset into desired channel
          edx,ebx
    add
          edx,physicalbase
                                      ;record reg address and data into
    or
                                           deferred buffer
          qs:[edi],edx
    mov
                                      ;
          qs:[edi+4],cl
                                      ;enable channel
    mov
          edi,(8-4)
                                      ;compute write pointer
    add
    add
          edi, physicalbase
          fs:[DisplayRecordPtr],edi ;set display write pointer
    mov
    mov
          fs:[DisplayReplayCtlReg],ENABLEREPLAY ;Enable replay at next
                                                   VBLANK DONE:
    ret
EnableChannelDisplay
                        endp
```

6.5.1.5 Set Display FIFO Controls

The display FIFO has 10 entries and needs to be programmed for entry allocation and thresholds for the control channel as well as display channels 1 and 2. The FIFO control register has to be reprogrammed on enabling or disabling display channels.

6.5.1.6 Set Channel 0 X,Y Scale Factors

Sets up X and Y scale factor registers for for channel 0. The scale factors are based on the source and destination image sizes. The scaling interpolation can be bilinear or nearest-neighbor. It is not possible to scale down below an X or a Y factor of 1/16; the scaling upper bound is 8 for YUV and 16 for RGB. The MPEG uses a bilinear interpolation scheme if the X scale factor is greater than 0.25; nearest-neighbor is used otherwise. For non-MPEG applications, bilinear interpolation is used with pre-filtering if the X scale factor is less than or equal to 0.5.

```
/* The following variables are given:
/*
Given
int srcXstride, srcYstride
int dstXstride, dstYstride, dstXoffset, dstYoffset, dstWidth, dstHeight, dstX-
                                      left, dstYtop
(Refer to Figure 6-6 for definition of above arguments.)
Boolean MPEG (1 if source is from SM3110's MPEG decoder, otherwise 0)
Boolean YUV422(1 if source is in interleave 4:2:2 format, 0 if planar format
                                      4:2:0)
Boolean YUV (1 if source is in YUV format, 0 if RGB)
*/
#define IncFracBits
                               11
#define INTG(x)
                        ((x)>>IncFracBits)
#define FRAC(x)
                        ((x)\&((1 < IncFracBits) - 1))
/* Clamp scaling factors to supported range */
xfactor = (double)dstXstride/srcXstride;
/* clamp scale Factor in x down to 1/16 or up to 8 for YUV or 16 for RGB */
if (xFactor < 0.0625) {
  xFactor = 0.0625;
  dstXstride = srcXstride * xFactor + 0.5;
} else {
  if ((RGB && (xFactor > 16.0)) {
    xFactor = 16.0;
    dstXstride = srcXstride * xFactor + 0.5;
  } else {
    if (YUV && (xFactor > 8.0)){
      xFactor = 16.0;
      dstXstride = srcXstride * xFactor + 0.5;
    }
  }
}
yFactor = (double)dstYstride/srcYstride;
/* clamp scale Factor in y down to 1/16 or up to 8 for YUV or 16 for RGB */
if (yFactor < 0.0625) {
```



```
yFactor = 0.0625;
  dstYstride = srcYstride * yFactor + 0.5;
} else {
  if ((RGB && (yFactor > 16.0)) {
    xFactor = 16.0;
    dstYstride = srcYstride * yFactor + 0.5;
  } else {
    if (YUV && (yFactor > 8.0)){
      yFactor = 16.0;
      dstYstride = srcYstride * yFactor + 0.5;
    }
  }
}
/* Adjust the source x stride if pre-scaling by hardware is to be performed.
                                      * /
prescale = 1;
if (!MPEG && (xfactor<=.5)) {
  while (xfactor<=.5) {</pre>
    xfactor *= 2.;
    prescale <<= 1;</pre>
  }
}
/* We need to pre-filter in X if prefilter > 1. Create a new source bitmap,
    average every 2, 4 or 8 pixels in the x direction based on prescale of 2,
    4 or 8 respectively. If p0,p1,p2,p3,p4,p5,p6,p7,p8..pn are pixels in a
    row. If variable prescale == 2, then the new source pixels will be pn0,
    pn1, pn2... where pn0=(po+p1)>>1, pn1=(p2+p3)>>1... If variable prefilter
    == 4, then the new source pixels will be pn1, pn2, pn3... where
    pn0=(po+p1+p2+p3)>>2, pn1=(p4+p5+p6+p7)>>2. Note: If srcWidth, the width
    of the bitmap is not an even multiple of prefilter, the last pixel in the
    row pixel is the average of the trailing remainder of pixels (less than
    prescale) . */
if (prefilter > 1) {
  srcXstride = dstXstride/xfactor+.5;
  prefilter the Bitmap
}
/* Determine interpolation mode */
if (MPEG && (xFactor<=0.25))
  interpolationMode = XNEAREST+YNEAREST;
else
   interpolationMode = XBILINEAR+YBILINEAR;
/* Compute x and y increments for Y component */
xIncY = (int)(((double)(srcXstride-1)/(dstXstride-1))*(1<<IncFracBits)+.5);</pre>
yIncY = (int)(((double)(srcYstride-1)/(dstYstride-1))*(1<<IncFracBits)+.5);</pre>
```



```
/* Find (xOffsetY, yOffsetY) from (dstXoffset, dstYoffset) */
if (dstXleft < 0 && dstXoffset < abs(dstXleft)) {</pre>
  dstXoffset = -dstXleft;
  dstWidth = dstWidth + dstXleft - dstXoffset;
ļ
                                   /* srcXstart in 0.21.11 format */
srcXstart = dstXoffset*xIncY;
xOffsetY = INTG(srcXstart);
                                    /* xOffsetY = x offset for Y component
                                    * /
initialXfracUV = FRAC(srcXstart>>1)>>(IncFracBits-4);
                                                              /* 0.0.4 for-
                                    mat */
/* Compute x and y increments for UV components */
xOffsetUV = xOffsetY>>1;
srcXstrideUV = srcXstride>>1;
if (!YUV420) {
  srcYstrideUV = srcYstride;
 yOffsetUV = yOffsetY;
} else {
  srcYstrideUV = srcYstride>>1;
 yOffsetUV = yOffsetY>>1;
}
xIncUV = (int)(((double)(srcXstrideUV-xOffsetUV-1-initialXfracUV*.0625) /
   (dstXstride-dstXoffset-1))*(1<<IncFracBits)+.5);</pre>
yIncUV = (int)(((double)(srcYstrideUV-yOffsetUV-1-initialYfracUV*.0625) /
   (dstYstride-dstYoffset-1))*(1<<IncFracBits)+.5);</pre>
viewX = dstXleft + dstXoffset;
viewY = dstYtop + dstYoffset;
interpolationMode = (initialYfracUV << 16) + initialXfracUV;</pre>
```

Sample code: Set Scaler Factor

```
;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add
                                     offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control
                                     buffer in the offscreen memory.
;gs selector points to the physical screen base.
Set Scaler Factor
                       proc
                              near
  mov
        edi,fs:[DisplayRecordPtr]
                                           ;load edi display write pointer
;read Display control status - disarms Deferred Display replay
          al,fs:[DisplayReplayStsReg]
                                           ;read status, disarm replay
  mov
  and
          al, REPLAYPENDING+REPLAYACTIVE
  cmp
                                            ;skip to add to Control buffer
          al, REPLAYPENDING
          RECORDLOADS
                                            ; if replay pending
  jz
```


@@:			
	ov	al,fs:[DisplayReplayStsReg] ;else wait while replay active
	est	al, REPLAYACTIVE	;
	nz	@B	skip to record writes if inactive
1	-	-	
ma	ov	edi,displayreplaybase	;set read and write pointers
mo	ov	fs:[DisplayRecordPtr],edi	;set display write base pointer
mo	ov	fs:[DisplayReplayPtr],edi	;set display read base pointer
RECO	RDLOAD		
SI	ub	edi,physicalbase	; edi has offset into buffer
LI	DAD	edx,Ch0Controls	;load Scaler controls, interpolation
			mode with initial fractions
01	r	edx,physicalbase	;record reg address and data into
			deferred buffer
	ov	gs:[edi],edx	;
	ov	eax, interpolationMode	;
mo	ov	gs:[edi+4],eax ;	
тт	חעם	dy ChaveControla	;load Scaler controls, Y/R increaments
11	DAD	edx,Ch0YRControls edx,physicalbase	;record req address and data into
01	Ľ	eax, physicalbase	deferred buffer
ma	ov	gs:[edi+8],edx	;
	ov	ax,yIncY	;
	hl	eax,16	;
	ov	ax, xIncY	;
	ov	gs:[edi+12],eax	;
		30 [0a1 12], oan	
\mathbf{LI}	DAD	edx,Ch0UVGBControls	;load Scaler controls, UV/GB increaments
01	r	edx,physicalbase	;record reg address and data into
			deferred buffer
mo	ov	gs:[edi+16],edx	;
mo	ov	ax,yIncUV	;
sł	hl	eax,16	;
ma	ov	ax,xIncUV	;
mo	ov	gs:[edi+20],eax	i
	DAD	edx,Ch00ffsets	;load Scaler controls, X,Y offsets
01	r	edx,physicalbase	record reg address and data into
			deferred buffer
	ov	gs:[edi+24],edx	;
	OV	ax, yOffsetY	;
	hl	eax,16 '	i
	ov	<pre>ax, xOffsetY ; </pre>	
mo	ov	gs:[edi+28],eax	;
T.T	DAD	edx,Ch0UOffsets	;load Scaler controls, X,Y offsets for U
11		car, choolibetb	plane
01	r	edx,physicalbase	;record reg address and data into
01	-	, <u>F</u> , <u>F-</u>	deferred buffer
ma	ov	gs:[edi+32],edx	;
	-	J	

mov	ax, yOffsetY	;	
shr	ax,1	;	
add	ax, srcYstride;		
shl	eax,16	;	
mov	ax, xOffsetY	;	
shr	ax,1	;	
mov	qs:[edi+36],eax	;	
1110 V	95.[cu1.50],cax	,	
LDAD	edx,Ch0VOffsets	;load	Scaler controls, X,Y offsets for V plane
or	edx,physicalbase	;recor	d reg address and data into deferred
			buffer
mov	gs:[edi+40],edx	;	
mov	ax, yOffsetY	;	
shr	ax,1	;	
add	ax, srcYstride	;	
shl	eax,16	;	
mov	ax,xOffsetY	;	
add	ax, srcXstride	;	
shr	ax,1	;	
mov	gs:[edi+44],eax	;	
1110 V	95.[car, 11], cax	,	
LDAD	edx,ChViewPositionSt	arts	;load Channel View base
add	edx,ebx	arco	;offset into desired channel
or	edx,physicalbase		;record reg address and data into
01	eux, physicalbase		deferred buffer
mov	gs:[edi+48],edx		;
mov	ax,viewY		;load viewport x,y
shl	eax,16		;
mov	ax,viewX		;
mov	gs:[edi+52],eax		;set viewport x,y
	J. [
LDAD	edx,ChViewPositionEn	ds	;load Channel Extent Base
add	edx,ebx		;offset into desired channel
or	edx,physicalbase		;record reg address and data into
			deferred buffer
mov	gs:[edi+56],edx		;
mov	ax,viewY		;load x,y ends
add	ax,dstHeight		;
shl	eax,16		;
mov	ax,viewX		;
add	ax,dstWidth		;
mov	gs:[edi+60],eax		;set x,y ends
- 1-7			
add	edi,(64-4)		;compute write pointer
add	edi,physicalbase		
mov	fs:[DisplayRecordPtr		
mov	fs:[DisplayReplayCtl	Reg],E	
			VBLANK
ret	_		
ot Casler	Factor ondo		

```
Set Scaler Factor endp
```


6.5.1.7 Set Overlay Priority

Sets overlay priority for the channel displays. The channel displays are logically designated as background and foreground for composing the resulting display. When no mix or overlays are set, the foreground appears on top of the background image. If only one channel is enabled, it is assigned as the background; the foreground is assigned a channel number that is disabled.

Sample code: Set Overlay Priority

```
;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add
                                      offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control
                                      buffer in the offscreen memory.
;qs selector points to the physical screen base.
;variables forechannel and backchannel have channel numbers , one
; of ( CHANNEL0, CHANNEL1, CHANNEL2 ).
SetOverlayPriority proc near
           edi,fs:[DisplayRecordPtr];load edi display write pointer
    mov
                                      ;read Display control status - disarms
                                       Deferred Display replay
                                             ;read status, disarm replay
    mov
          al,fs:[DisplayReplayStsReq]
          al, REPLAYPENDING+REPLAYACTIVE;
    and
    cmp
           al, REPLAYPENDING
                                      ;skip to add to Control buffer
          RECORDLOADS; if replay pending
    İΖ
@@:
          al,fs:[DisplayReplayStsReg];else wait while replay active
    mov
          al, REPLAYACTIVE
    test
          @B
                                      ;skip to record writes if inactive
    jnz
    mov
           edi,displayreplaybase
                                      ;set read and write pointers
          fs:[DisplayRecordPtr],edi ;set display write base pointer
    mov
          fs:[DisplayReplayPtr],edi ;set display read base pointer
    mov
RECORDLOADS:
          edi, physicalbase
                                      ;edi has offset into buffer
    sub
    LDAD
          edx,OverlayPriority
                                      ;load Overlay priority
          edx, physical base
                                      ; record reg address and data into
    or
                                      deferred buffer
          qs:[edi],edx
    mov
          al, forechannel
                                       ;load foreground
    mov
          al,2
                                      ;normalize
    sub
          eax,8
    shl
          al, backchannel
                                       ;load background channel
    mov
    sub
          al,2
                                      ;normalize
    mov
          gs:[edi+4],eax
                                      ;enable channel
    add
          edi,(8-4)
                                      ;compute write pointer
          edi, physicalbase
    add
           fs:[DisplayRecordPtr],edi ;set display write pointer
    mov
```


mov fs:[DisplayReplayCtlReg],ENABLEREPLAY

;Enable replay at next VBLANK

ret SetOverlayPriority endp

6.5.1.8 Set Mix Controls - Blend

With the priority controls set, the surfaces attached to the background can be blended with the foreground channel in certain modes. The blending can be constant or controlled on a per-pixel basis by defining a control surface and has to be enabled. For constant blend, the blend factor is set in the Mix Control register. This determines the percentage of source and destination used for the blend. With blend enabled, if a control surface (4BPP) is defined and enabled, the blend factor is defined by the control surface bitmap on a per-pixel basis. The constant blend is used for areas that do not overlap the control surface.

Sample code: Set Mix Controls - Blend

;fs selector points to the register base address ;Variable physicalbase has the immediate register physical base address, add offsets to yield register addresses ;displayreplaybase has the base address offset of Display Deferred Control buffer in the offscreen memory. ;gs selector points to the physical screen base. ;Assume that surfaces have been previously defined and attached to channel 0 and channel 1, and priority has been set. ;This example sets a constant blend for back and fore channels and enables blending. Blend constant is specified by the ;variable blendfactor (0 < blendfactor < 0fh). If a 4BPP blend surface has been previously defined and attached to ;the control surface, enables blend on a per pixel basis on the overlapping areas.

SetBlendin	g proc near		
mov	edi,fs:[DisplayRecordPtr]	;load edi display write pointer	
		;read Display control status - disarms	
		Deferred Display replay	
mov	al,fs:[DisplayReplayStsReg];read status, disarm replay	
and	al,REPLAYPENDING+REPLAYACTIVE;		
cmp	al, REPLAYPENDING	;skip to add to Control buffer	
jz	RECORDLOADS	; if replay pending	

@@:				
	mov	al,fs:[DisplayReplayStsReg];else wait while replay activ		
	test 	al,REPLAYACTIVE	; alight to more and emitted if incations	
	jnz	@B ;	skip to record writes if inactive	
	mov	edi,displayreplaybase	;set read and write pointers	
	mov	fs:[DisplayRecordPtr],edi	;set display write base pointer	
	mov	fs:[DisplayReplayPtr],edi	;set display read base pointer	
REC	ORDLOAD	os:		
	sub	edi,physicalbase	;edi has offset into buffer	
	LDAW	edx,Dsp0MixCtl	;load Mix control register	
	or	edx,physicalbase	;record reg address and data into	
			deferred buffer	
	mov	gs:[edi],edx	i	
	mov	ax,blendfactor	;load blend constant	
	or	ax,BLENDENABLE	;enable blend	
	mov	gs:[edi+4],ax	;load back/fore mix data	
	add	edi,(8-4)	;compute write pointer	
	add	edi,physicalbase	i	
	mov	fs:[DisplayRecordPtr],edi	;set display write pointer	
	mov	fs:[DisplayReplayCtlReg],E	NABLEREPLAY	
			;Enable replay at next VBLANK	
	ret			

```
SetBlending endp
```


6.5.1.9 Set Mix Controls - Color Keying

Color keying allows pixels with a specified color (the key color) on an overlapping surface to become transparent and display the pixels from the underlying surface. The key color is set and the keying enabled. If the surface being compared is a YUV surface, the chroma compare color (Ch0ChromaCmp) is set. The keying operation can be performed on background (RGB) with the foreground channel. If keying is enabled and a 1 BPP control surface is defined and enabled, the control surface specifies the keying. Pixels corresponding to a 1 bit on the control surface allow the foreground to be displayed, while a 0 bit displays pixels from the background surface.

Sample code: Set Mix Controls - Color Keying

;fs selector points to the register base address ;Variable physicalbase has the immediate register physical base address, add offsets to yield register addresses ;displayreplaybase has the base address offset of Display Deferred Control buffer in the offscreen memory. ;qs selector points to the physical screen base. ;Assume that surfaces have been previously defined and attached to channel 0 and channel 1, and priority has been set. ;This example sets key color given in variable keycolor and enables keying for the back channels. SetColorKeying proc near edi,fs:[DisplayRecordPtr] ;load edi display write pointer mov ;read Display control status disarms Deferred Display replay ;read status, disarm replay mov al,fs:[DisplayReplayStsReg] al, REPLAYPENDING+REPLAYACTIVE and ; cmp al, REPLAYPENDING ;skip to add to Control buffer İΖ RECORDLOADS ; if replay pending @@: al,fs:[DisplayReplayStsReg] ;else wait while replay active mov al, REPLAYACTIVE test ; @B ;skip to record writes if inacjnz tive edi, displayreplaybase ;set read and write pointers mov fs:[DisplayRecordPtr],edi ;set display write base pointer mov fs:[DisplayReplayPtr],edi ;set display read base pointer mov


```
RECORDLOADS:
          edi,physicalbase
                                      ; edi has offset into buffer
    sub
          edx,Disp0ColCmp
                                      ;load Display0 back/fore key compare
    LDAD
                                      color register
           edx, physicalbase
                                      ;record reg address and data into
    or
                                      deferred buffer
          qs:[edi],edx
    mov
          eax,keycolor
                                      ;set key color
    mov
          gs:[edi+4],eax
                                      ;load Key compare color
    mov
    LDAW
          edx,Dsp0MixCtl
                                      ;load Mix control register
          edx, physicalbase
                                      ;record reg address and data into
    or
                                      deferred buffer
          qs:[edi+8],edx
    mov
          ax, ENABLECOLKEY+KEYNORMAL+KEYSRCFORE
    mov
          gs:[edi+12],ax
                                      ;load back/fore mix data
    mov
    add
          edi,(16-4)
                                      ;compute write pointer
    add
          edi,physicalbase
                                      ;
          fs:[DisplayRecordPtr],edi ;set display write pointer
    mov
          fs:[DisplayReplayCtlReq], ENABLEREPLAY ;Enable replay at next
    mov
                                                    VBLANK
    ret
SetColorKeying
                 endp
```

6.5.1.10 Get Displayed Scanline

Returns the current scanline being displayed. The first line of active display is 0 increasing in Y, resets to 0 at the end of vertical blanking.

```
;fs selector points to the register base address.
```

```
mov ax,fs:[VerticalCounter] ;read scanline currently being displayed
```

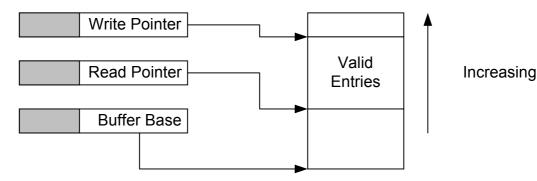

6.5.2 2D Command and Data FIFOs

All commands, parameters and operand data for the rendering engine are communicated by the host processor through two FIFOs that are fetched, parsed and executed by the rendering engine command processor. This allows concurrence between the host processor and the rendering engine that significantly improves drawing performance.

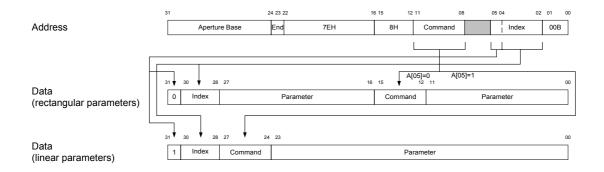
The two FIFOs are implemented in a portion of local memory allocated by the display driver. This has several advantages:

- 1. The size of these buffers may be (relatively) much larger than can be implemented using conventional SRAM of latch array FIFOs. This reduces the amount of overhead that the driver must spend managing a command/data FIFO (to prevent overflows).
- 2. It allows much larger data images (particularly BLTs and text) to be written into the buffer. This allows a longer sequence of commands to be posted by the driver so that it can return earlier or perform another task.
- 3. It allows the state of a command and its operand data to be retained in local memory if some task switch occurs with minimal state-saving overhead.

The control/parameter and image/data FIFO are implemented as circular buffers. The base addresses, write pointers and read pointers are stored memory controller registers and must be initialized by the display driver. The base address and size of each circular buffer are configurable and should be set up by writing directly to the registers before the engine is used the first time. They should not have to be changed again unless the buffer needs to be moved or resized.


The write pointer is normally updated by hardware when control information is written to the rendering engine aperture. The read pointer is incremented when this information is read by the rendering engine command processor. If the read pointer reaches the write pointer, the circular buffer is empty and fetching of control information stops pending further writes. If the write pointer reaches the read pointer, the circular buffer is full and further data will not be accepted from the host. The host bus interface may abort (if possible) to prevent locking out other independent transfers.

The driver should make every attempt to avoid having a transfer stall due to a filled condition by checking the status of the buffer if a large transfer is to be performed.


6.5.2.1 Image/Data Control Port

The 2D image data is also passed through buffers in local memory. Transfer of data images must be broken up into blocks of 64KB or less, constrained by the size of the buffer allocated. The buffer base address and buffer size must be initialized prior to use. The read and write pointers must also be initialized to zero, indicating an empty buffer. These should not have to be accessed again during normal operation.

6.5.2.2 2D Command Port

The command port is a 64KB port through which control and parameter information can be written in local memory. Additional control information is encoded in the address to reduce the number of data transfers required across the host bus. The least significant 16 bits of address are extracted, parsed and inserted into bits [31:28] and [15:12] of each parameter doubleword before it is written into the rendering buffer list. The actual address used bears no relationship to the address to which the parameter is written to local memory. If the command is other than a NOP, a double-word entry is automatically stored in the buffer.

6.5.2.3 FIFO Status

The FIFO pointers will be updated whenever data is written by the host through the command/ parameter or image data ports or read by the engine, which must have been started.

The read and write pointers may be directly read by the host to determinehow full or empty a FIFO is. Note that if the host is writing to the respective FIFO or the engine is operating, the value read may be inaccurate for one of several reasons:

- 1. The exact value of each register may be off due to the latency in performing the read operation.
- 2. The accuracy of the value read may be wrong due to the latency of reading more than one byte, which may take several clock cycles. If one of the counters is updated while a read occurs, the value read from each byte may occur at slightly different times, yielding an inconsistent sample of counter contents. For example, the read from the first byte samples the contents of the entire counter as 03F0H but returns only the least significant byte as F0H; then the read of the second byte samples the contents of the entire counter as 0400H but returns the most significant byte as 04H. The bus interface will assemble these two bytes and return a value of 04F0H, which is incorrect. To eliminate this problem, it is recommended that only the most significant byte be read unless the engine is stopped. This will guarantee a maximum inaccuracy of 100H bytes, because the content of the least significant byte is not known.
- 3. A single bit returns the status of each FIFO indicating whether less than 1/8th of the FIFO remains unfilled. The driver may check this single bit to determine whether the exact status of the FIFO should be read to determine whether additional command should be written. Note that in normal circumstances the large size of the command/ parameter FIFO means it should never get completely filled.

An additional flag byte is provided to indicate that the FIFOs are completely empty. This is useful for the image data FIFO, since this indicates the maximum amount of data that can be written.

6.5.3 2D Rendering Engine Commands

The commands and parameters are programmed via the 64KB memory-mapped control port, and any image data (for operations involving a source bitmap or pattern) is copied to a 32KB image port within 16KB address range (C000h to FFFFh). The parameter registers are at specific addresses, and alternate parameter addresses have additional control information encoded. Parameters written to these specific addresses trigger execution of commands. This mechanism eliminates the need to explicitly program a command.

The parameter addresses and the commands are defined in Section 6.14.1, Equates. The 2D programming examples use Intel assembly language style constructs. All examples assume:

```
fs = CmdPortSelector: selector points to the register base address
es = ImagePortSelector: selector points to the image data buffer base address
```

The 2D commands include:

- Wait Engine Idle, Check FIFO Size, Set Clip Rectangle
- Load Mono Pattern, Load Mono Color, Load General Pattern
- Block fill, Transparent_Text and Opaque Text
- BitBLT with 256 ROPs
- Transparent BitBLT with 256 ROPs
- Line segments

It is assumed that the controller has been set to the desired mode, i.e., the resolution and the color depth have been selected. Note that these commands are operational only in 8BPP, 16BPP or 24BPP modes. The programming is consistent for all color depths. The color information is significant in the lower order bits.

6.5.3.1 Wait Engine Idle

To ensure data integrity, direct read/write to display memory may need to wait for all rendering engine operations to finish.

Sample code: Wait Engine Idle

```
WaitEngineIdle macro wSelector, reg
Local _loop
_loop:
    Mov reg, wSelector&:[Status2D]
    test reg, BUSY2D
    jnz _loop
    endm
```


6.5.3.2 Check FIFO size

The 2D engine commands written into the Control Port addresses are stored in a command FIFO. The image data written into the Image Port addresses are stored in the image FIFO. The engine executes these commands and consumes the image data. The application can query the FIFO entries available in eighths of the total allocated size. Both the command FIFO and image FIFO size can go up to 32KB maximum. In Section 6.4.5, Physical Buffer for FIFOs, command FIFO is allocated 16KB as an example. One eighth of allocated buffer is the minimum size to be checked.

Sample code: Check FIFO size

WaitCMDFIFO wSelector, Eighths macro Local _loop _loop: byte ptr wSelector&:[CmdFIFOStatus], Eighths cmp jl _loop endm WaitIMGFIFO macro wSelector, Eighths Local _loop _loop: byte ptr wSelector&:[ImgDataFIFOStatus], Eighths CMD jl _loop endm

Thus, to wait for 2D command FIFO 4KB (1/4 of 16KB) empty, use this code.

mov fs, CmdPortSelector
WaitCMDFIFO fs, FIFO1_4TH

To wait for 2D image FIFO 4KB (1/8 of 32KB) empty, use this code.

WaitIMGFIFO fs, FIFO1_8TH

6.5.3.3 Clip Rectangle

SM3110 supports hardware clipping to eliminate the software checking whether the rendering destination's dimension is out of the defined boundary. Note that all bounding coordinates are inclusive.

Sample code: Set Clip rectangle

```
;fs= CmdPortSelector: selector points to the register base address
; lpClipRect = clip rectangle
ClipRectangle
                proc
                       near
    mov
          gClipFlag,0
                                         ;global flag, default 0
    CMD
          word ptr lpClipRect+2, 0
                                         ;see if clip rect exist?
          CR_done
    je
                                         ;no, exit
    lds
          si,lpClipRect
                                         ;ds:si-->clip rect
    WaitCMDFIFO fs, FIF01_8TH
    mov eax,[si]
                                         ;left and top are inclusive
          edx,[si][4]
                                         ;right and bottom are exclusive
    mov
    sub edx,10001h
                                         ;make them inclusive
        fs:[ClipULXY], eax
                                         ;Load h/w clip registers
    mov
         fs:[ClipLRXY], edx
    mov
          qClipFlaq,F_CLIP
                                         ; save for later use
    mov
CR done:
    ret
Cliprectangle
                 endp
```

After calling this routine, remember to combine the global clipping flag 'gClipFlag' when setting the parameter "FLAGs".

6.5.3.4 Load Mono Pattern

Loads an 8x8 mono pattern into the internal pattern register. The pattern is stored internally as a color pattern with a 1 in the mono pattern replaced by the color from the Foreground color register and a 0 replaced by the color from the Background color register. This pattern will be used in subsequent Pattern Copy or BitBLT commands that involve a mono pattern.

Sample code: Load Mono Pattern

;fs= CmdPortSelector: selector points to the register base address ;es=ImagePortSelector: selector points to the image data buffer base address. ;ds:[esi] points to a 8 byte buffer that contains the 8x8 mono pattern ;eax has the foreground color COLOR0 and ebx has the background color COLOR1

```
LoadMonoPattern proc
                              near
    WaitCMDFIFO fs, FIFO1 8TH
    mov
       fs:[BGColor],ebx
                                          ;load background color and load
    mov fs:[FGColor+EXEC_LOAD_MPATTERN],eax
                                                 ;foreground color and exe-
                                                 cute command
    WaitIMGFIFO fs, FIFO1_8TH
          edi,edi
                                           ; index into image buffer == 0
    xor
                                           ;load 8 bytes of mono pattern
    movsd
    movsd
    ret
LoadMonoPattern endp
```

6.5.3.5 Load Color Pattern

Loads an 8x8 color pattern into the internal pattern register. This pattern will be used in subsequent Pattern Copy or BitBLT commands that involve a color pattern.

Sample code: Load Color Pattern

```
;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to a 8x8 color bitmap buffer that contains the mono pattern
```

```
LoadColorPattern proc near
    WaitCMDFIFO fs, FIF01_8TH
    mov fs:[EXEC_LOAD_CPATTERN+NOLOAD],0
                                                  ;execute command **
          ecx, dwBpp
    mov
                                     ;8/16/24 bpp
                                    ;8*8*bpp/8 /4 for DWORD count=bpp*2
          ecx, ecx
    add
    WaitIMGFIFO fs, FIFO1_8TH
         edi,edi
                                   ; index into image buffer == 0
    xor
   rep movsd
                                    ;load the color pattern
   ret
LoadColorPattern endp
```

NOTE: The destination X,Y for the succeeding Pattern Copy or BitBLT can be set while executing the load color pattern command.

6.5.3.6 Load General pattern

For the general case, a Load Pattern routine can be as follows:

Sample code: Load Pattern

;lpPattern points to a 8x8 color/mono pattern

LoadPatter	rn proc near	
cmp	word ptr lpPattern+2, 0	;see if pattern exist?
je	LP_done	;no, exit
lds	si, lpPattern	;ds:si>clip rect
cmp	ds:[si].BitsPerPixel,1	;check if color or mono
je	LP_mono	
LP_color:		
lea	esi,ds:[si].Color	;points to start of color pattern
call	LoadColorPattern	
jmp	LP_done	
LP_mono:		
lea	esi,ds:[si].Mono	;points to start of mono pattern
call	LoadMonoPattern	
LP_done:		
ret		
LoadPatter	rn endp	

Programmer's Reference

6.5.3.7 Block fill (Opaque Rectangle)

Draws a solid rectangle filled with COLOR1. The rectangle top left corner is located at X1,Y1 with height of HEIGHT1 and width WIDTH1. This command can also be used to do the BitBLT operations with ROP set to WHITENESS (255) or BLACKNESS (0).

Sample code: Block fill (Opaque Rectangle)

```
;fs= CmdPortSelector: selector points to the register base address
OpaqueRectangle proc
                               near
    WaitCMDFIFO fs, FIFO1 8TH
    Set2WordsToReg32WIDTH1,HEIGHT1,ax
                                                   ;eax=(W1,H1), W1 in low
                                                   word
    Set2WordsToReg32X1,Y1,bx
                                                   ;ebx=(X1,Y1), X1 in low
                                                   word
          edx,COLOR1
                                                   ;the color for the fill
    mov
                                                   rectangle
                                                   ;set height and width
          fs:[XYExtents],eax
    mov
          fs:[DestXY],ebx
                                                   ;load top left x,y
    mov
          fs:[BGColor+EXEC_OPAQUE_RECT],edx
                                                   ;load color and execute
    mov
                                                   command
   ret
OpaqueRectangle endp
```

Note: Throughout this document, the following macro is used to move the source and destination rectangle dimensions into registers.

Sample code: Set 2 WORDs to a 32-bit register

```
Set2WordsToReg32 macro Lo_word, Hi_Word, reg16
mov reg16,Hi_Word
shl e&reg,16
mov reg16,Lo_Word ;upper-left X,Y coordinate of the rect-
angle(X in low word)
endm
```


6.5.3.8 Transparent Text

The monochrome bitmap that defines the text character is rendered. The image is color-expanded with pixels corresponding to a 1 colored with COLOR1, set in the foreground color register. Pixels corresponding to a 0 are unmodified. The character is rendered with the top left corner at X1,Y1. The character width and height are WIDTH1 and HEIGHT1, respectively. Each new row of the bitmap defining the text begins on the next bit. The last double word written to the image port may have to be padded .

Sample code: Transparent Text

```
;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to the monochrome character data
;ecx has count double words in the monochrome image = (( ((width +7)/8) *
                                     height) + 3) / 4 dwords
TransparentText proc
                        near
    WaitCMDFIFO fs, FIFO1_8TH
    Set2WordsToReg32WIDTH1, HEIGHT1, ax
                                            ;eax=(W1,H1), W1 in low word
    Set2WordsToReq32X1,Y1,bx
                                            ;ebx=(X1,Y1), X1 in low word
    mov edx,COLOR1
                                            ;the foreground color
    mov fs:[FGColor],edx
                                            ;set foreground color
    mov fs:[XYExtents],eax
                                            ;set height and width
    mov fs:[DestXY+ EXEC_TRANS_TEXT],ebx
                                            ;load top left x,y & execute cmd
    WaitIMGFIFO fs, FIFO1_8TH
    xor edi,edi
                                            ; index into image buffer == 0
   rep movsd
                                            ;copy mono bitmap
    ret
TransparentText endp
```

Programmer's Reference

6.5.3.9 Opaque Text

The monochrome bitmap that defines the text character is rendered. The image is color-expanded with pixels corresponding to a 1 colored with COLOR1, the foreground color. Pixels corresponding to a 0 are colored with COLOR0, the background color.

Sample code: Opaque Text

```
;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to the monochrome character data
;ecx has count double words in the monochrome image = (( ((width +7)/8) *
                                     height) + 3) / 4 dwords
OpaqueText proc
                 near
    WaitCMDFIFO fs, FIF01_8TH
    Set2WordsToReg32WIDTH1,HEIGHT1,ax
                                             ;eax=(W1,H1), W1 in low word
    Set2WordsToReg32X1,Y1,bx
                                             ;ebx=(X1,Y1), X1 in low word
                                             ;the foreground color
          edx,COLOR1
    mov
          edi,COLOR0
                                            ;the background color
    mov
          fs:[BGColor],edi
                                             ;set background color
    mov
        fs:[FGColor],edx
                                            ;set foreground color
    mov
          fs:[XYExtents],eax
                                             ;set height and width
    mov
          fs:[DestXY+ EXEC_OPAQUE_TEXT],ebx
                                                    ;load top left x,y & exe-
    mov
                                     cute command
    WaitIMGFIFO fs, FIFO1_8TH
          edi,edi
                                             ; index into image buffer == 0
    xor
    rep
          movsd
                                             ;copy mono bitmap
    ret
OpaqueText endp
```


6.5.3.10 BitBLT

The BitBLT operation involves movement of rectangular blocks of data from the source to the destination on the screen. The source can be on the screen or in a system memory bitmap. If the source is from the system memory, the bitmap can be monochrome or color. The monochrome bitmaps are color-converted based on the foreground and the background colors. If the source bitmap bit is a 1, the foreground color is used to render, and if the bitmap bit is a 0, the background color is used. An 8x8 pattern can be involved in the BitBLT operation. The three operands pattern, source and destination can be combined based on the ternary raster operation specified (ROP). The ternary ROP specifies a combination of AND, OR, XOR and NOT operations between the three operands. The resulting data is rendered into the destination.

BitBLT with ROPs that do not contain source, pattern or destination operands can be rendered using the BitBLT command. The BitBLT operations with only the destination operand are similar to the BitBLT operation with pattern operand described below. All BitBLT operations that contain a pattern operand must first load the monochrome or the color pattern. The load mono pattern or the load color pattern command is used for this operation. BitBLT operations with source operand in local memory (screen) must set up drawing directions in X and Y, if the source and destination rectangles overlap. Default drawing directions for all other BitBLTs are increasing in the X and Y directions.

Programmer's Reference

6.5.3.11 Pattern BLT Without Source Operand

Performs a BitBLT to the specified destination rectangle. The ROP defined for this operation contains only the pattern operand or a pattern and destination combination. The top left of the rectangle is at X1,Y1 and the rectangle has a height HEIGHT1 and a width WIDTH1. The monochrome or color pattern is previously loaded with a pattern load command. The rendered pattern is aligned with the origin 0,0. If only a destination operand is present in the ROP, no pattern is loaded.

Sample code: Pattern BLT

```
;fs= CmdPortSelector: selector points to the register base address
;variable RopValue = ROP function, contains only the pattern, or pattern and
                                      destination operands
PatternBlt
                 proc
                        near
    call
          ClipRectangle
                                      ;set clip rectangle if necessary
                                      ;Load the pattern to internal buffer
    call
          LoadPattern
    WaitCMDFIFO fs, FIFO1_8TH
    Set2WordsToReg32WIDTH1,HEIGHT1,ax
                                             ;eax=(W1,H1), W1 in low word
    Set2WordsToReg32X1,Y1,bx
                                      ;ebx=(X1,Y1), X1 in low word
                                      ;set height and width
    mov
          fs:[XYExtents],eax
          fs:[DestXY],ebx
                                      ;load top left x,y & execute command
    mov
          ecx,F_XP+F_YP+CMD_BITBLT
                                      ;draw in X left to right, Y top to bot-
    mov
                                            tom, blt command
          ecx,gClipflag
                                             ;set clip flag
    or
          cl,RopValue
                                             ;move ROP into low byte
    mov
          fs:[ FLAGs + EXEC_CMD],ecx
                                             ;set flags register & execute
    mov
                                             command
    ret
PatternBlt
                 endp
```

For the pure **pattern copy** (ROP=0F0h) case without clipping rectangle, the last 5 command lines can be combined as following:

mov fs:[DestXY + EXEC_PAT_COPY],ebx ;load top left x,y & execute command

6.5.3.12 Display Memory Source BLT with/without Pattern

Performs a BitBLT to the specified destination rectangle. The ROP defined for this operation contains a source operand or a source and destination combination. There can be an associated pattern operand in each case. The top left of the destination rectangle is at X1,Y1 and the rectangle has a height HEIGHT1 and a width WIDTH1. The source is in local display memory and the top left of the source rectangle is at X0,Y0. If a pattern is present, the monochrome or a color pattern is previously loaded with a pattern load command. The rendered pattern is aligned with the origin at 0,0. If source and destination rectangles overlap, then BLT directions need to be determined in parameter 'FLAGs'.

Sample code: Screen To Screen BLT

```
;fs= CmdPortSelector: selector points to the register base address
;variable RopValue = ROP function, contains only source, or source and desti-
                                      nation operands
ScreenToScreenBlt
                        proc
                               near
    call ClipRectangle; set clip rectangle if necessary
    call
          LoadPattern;Load the pattern to internal buffer
    WaitCMDFIFO fs, FIF01_8TH
    mov ecx, F_XP+F_YP+CMD_BITBLT+F_COLOR
                                                    ;draw X left to right, Y
                                                    top to bottom, blt
                                                    cmd, color src
;;set blt directions
         ax,Yl
    mov
    cmp
          ax,Y0
    jlsbd done
                                      ;Y1<Y0, positive direction
    jg sbd_set_neg
                                      ;Y1>Y0, negative direction
                                      ;Y1=Y0, check X
    mov ax,X1
    cmp ax,X0
    jlesbd_done
                                      ;Y1=Y0, X1<=X0, positive direction
sbd_set_neg:
                                      ;set negative direction
    orecx,F_XN+ F_YN
                                      ;decreasing x,y
    mov ax, HEIGHT1
    mov dx,WIDTH1
    dec ax
                                      ;HEIGHT1-1
    dec dx
                                      ;WIDTH1- 1
    add Y1,ax
                                      ;Y1 = Y1+HEIGHT1-1
    add Y0,ax
                                      ;Y0 = Y0+HEIGHT1-1
    add X1,dx
                                      ;X1 = X1 + WIDTH1 - 1
    add X0,dx
                                      ;X0 = X0 + WIDTH1 - 1
sbd done:
    or ecx,gClipflag
                                      ;set clip flag
    mov cl,RopValue
                                      ;move ROP into low byte
    mov fs:[FLAGs],ecx
                                      ;set flags register
    Set2WordsToReg 32WIDTH1, HEIGHT1, ax
                                             ;eax=(W1,H1), W1 in low word
    Set2WordsToReg 32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
    Set2WordsToReg 32X0,Y0,dx
                                    ;edx=(X0,Y0), X0 in low word
    mov fs:[XYExtents],eax
                                    ;set height and width
    mov fs:[SrcXY],edx ;load source x,y and de
mov fs:[DestXY+EXEC_CMD],ebx ;x,y & execute command
                                      ;load source x,y and destination
    ret
ScreenToScreenBlt
                        endp
```


Note:

A screen-to-screen BLT does not necessarily mean from visible area to visible area. The source and/or destination may be from offscreen memory. There are two ways to perform this type of BLT. The first is to specify a Surface Descriptor for the offscreen surface. If the surface to be BLTed is not the current one, set the base address, (Ax0h), pixel size (Ax4h) and surface stride (Ax4h), then set the surface descriptor (824h) to that surface index. Do a normal screen-to-screen BLT and the operation will use the specified surface.

In the second BLT method, set the source stride register (804h) to the source's stride in offscreen memory, then set the linear source address register (838h) to the source's offset in offscreen memory. Set the destination using surface descriptors as described above and the BLT using the LinBLT operation (820h[11:08]=6H) instead of the standard BitBLT

6.5.3.13 System Memory Source BLT with/without Pattern

Performs a BitBLT to the specified destination rectangle. The source is image data in system (CPU) memory. The ROP defined for this operation contains a source operand or a source and destination combination. There can be an associated pattern operand in each case. If a pattern is present, the monochrome or color pattern is previously loaded with a pattern load command. The rendered pattern is aligned with the origin at 0,0. The top left of the destination rectangle is at X1,Y1 and the rectangle has a height HEIGHT1 and a width WIDTH1. The source data can be monochrome or color. The image data in moved in one of three(3) ways: as an opaque BLT, as a monochrome transparent BLT, or as a color transparent BLT. Each of these is shown below.

Opaque BitBLT

Usually opaque operation is used with ternary ROP. With a monochrome source, the 1BPP image data is color expanded. Pixels corresponding to a 1 in the source bitmap are colored with the fore-ground color, and pixels corresponding to a 0 are colored with the background color.

Sample code: Image Data Source BLT

```
;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;variable RopValue = ROP function, contains only source, or source and desti-
                                    nation operands
ImageDataSrcBlt proc near
   call ClipRectangle
                                    ;set clip rectangle if necessary
   call LoadPattern
                                    ;Load the pattern to internal buffer
   WaitCMDFIFO fs, FIFO1_8TH
  ;;set command flags portion - begin
          ecx,F_IMGDATA+ F_DWORD+CMD_BITBLT ;CPU to screen Blt, mono source
   mov
   lds
          esi,lpSrcDevice
                                  ;point to source device
   cmp ds:[esi].BitsPerPixel,1 ;check if color or mono?
   Jne SB_src_color
SB_src_mono:
                                    ;load foreground color
   Mov
          eax,COLOR1
```


;load background color ebx,COLOR0 Mov fs:[FGColor],eax mov mov fs:[BGColor],ebx SB_check_src_done jmp SB_src_color: or ecx,F_COLOR+ F_TCOPAQUE ;source is color bitmap, no transparency SB_check_src_done: or ecx,gClipflag ;set clip flag ;move ROP into low byte mov cl,RopValue fs:[FLAGs],ecx ;set flags register mov ;;set command flags portion - en Set2WordsToReq32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low word Set2WordsToReq32 X1,Y1,bx ;ebx=(X1,Y1), X1 in low word fs:[XYExtents],eax ;set height and width and destination mov mov fs:[DestXY+EXEC_CMD],ebx ;top left x,y & execute command ;calculate the number of dwords to be transferred= ((width*bpp + 31) / 32) * height dwords movzx eax,ds:[esi].BitsPerPixel mul WIDTH1 add eax,31 shr eax,5 ;note that each row is padded so new rows begin on a fresh dword. If the image is color then F_COLOR bit of the FLAGs has to be set ; In F_DWORD mode, new rows use the next dword of source data, rows ends may have to be padded ; if the image is larger then 64K, the transfer is performed in increments of the image buffer size ;src rect's bytes per scan line mov edx,ds:[esi].WidthBytes lea esi,ds:[esi].BmpData ;pointer to image data in CPU ebx,HEIGHT1 mov SB_loop: ;transfer dword count mov ecx,eax Push esi WaitIMGFIFO fs, FIFO1_8TH edi,edi xor movsd ;transfer the image rep esi pop ;advance to next line of src data add esi,edx dec ebx jnz SB_loop ret ImageDataSrcBlt endp

Monochrome Transparent BitBLT

To inhibit rendering of pixels corresponding to a 0 bit or a 1 bit in a monochrome source bitmap, set the Mono Source BLT Transparency bits in the FLAGs register to the desired configuration. The following example transfers a mono rectangular image to screen. The monochrome image is color expanded. Pixels corresponding to a 1 in the source bitmap are colored with the foreground color. Pixels corresponding to a 0 are unmodified.

In the "set command flags portion" of sample code above, modify to the following

mov	ecx,F_IMGDATA+ F_MBT+F_DWC	RD+CMD_BITBLT
		;CPU to screen Blt, mono source,
		Transparent background
mov	eax,COLOR1	
mov	fs:[FGColor],eax	;load foreground color
or	ecx,gClipflag	;set clip flag
mov	cl,RopValue	;move ROP into low byte
mov	fs:[FLAGs],ecx	;set flags register

Note: By setting the F_MFT bits in the FLAGs register instead of the F_MBT bits, background color is rendered for pixels corresponding to a 0 bit in the source bitmap. The pixels corresponding to the 1 bit in the source bitmap are unmodified. Selecting the F_MNORMAL mode in the FLAGs register performs a straight color expansion, with 0's and 1's colored with background and foreground respectively. The F_MINVERT performs an inverted color expansion, with 1's expanded to background color and 0's expanded to foreground color.

Color Transparent BitBLT

Transparent BitBLT commands are similar to normal BitBLT commands. With a color bitmap as a source, it is possible to inhibit rendering pixels of a given source color. With this configuration selected in the flags register, if source pixels are the same as the compare color set in the back-ground color register, corresponding pixels in the destination are not rendered. The flags can also be set so updates occur only when the color matches. The following example performs a color Transparent BitBLT. The source color bitmap is in the CPU system memory. The compare color is COLOR_COMPARE and has to be loaded into the background color register. The destination is not updated for pixels when source pixel color is equal to COLOR_COMPARE. The destination rectangle is at X1,Y1 with a height HEIGHT1 and width WIDTH1. The ROP is SOURCECOPY.

In the "set command flags portion" of sample code above, modify to the following

```
mov
      eax,F_IMGDATA+ F_COLOR+F_DWORD+F_TCSRC+CMD_BITBLT
                                  ;CPU to screen transparent Blt, color
                                  source, Transparent color source
      eax, COLOR COMPARE
mov
      fs:[TRANSColor],eax
                                  ;load compare color
mov
      ecx,qClipflaq
                                  ;set clip flag
or
      cl,0CCh
                                  ;move SOURCECOPY ROP into low byte
mov
      fs:[FLAGs],ecx
                                  ;set flags register
mov
```

Note: The transparency function can be applied to the destination by setting F_TCDEST in the flags register instead of the F_TCSRC bits. Destination pixels are unmodified if the destination pixel color equals COLOR_COMPARE the compare color as set in the background color register.

Transparent pattern BLTs can also be performed for BitBLTs involving patterns by selecting F_TCPAT bits in the flags register. The pattern has to be previously loaded. Destination pixels are not updated if the pattern pixel color equals COLOR_COMPARE, the compare color. In summary, color transparent flags can set to F_TCSRC, F_TCDEST or F_TCPAT in the FLAGs register for Source, Destination or Pattern transparency, respectively. Additionally, the F_TBINVERT flag can be set so the sense of the transparency can be inverted. The BitBLT destination is updated only when a color match occurs. Transparent BLTs can also be performed with local display memory (screen to screen) BitBLTs.

Programmer's Reference

6.5.3.14 Line Draw

The SM3110 controller does not have an explicit line draw command. It does provide commands to draw horizontal or vertical intercepts which can be used to draw lines between arbitrary X,Y coordinate pairs. The line drawing can be classified into 8 direction types (eight octants) based on the drawing direction. A single command draws a horizontal line intercept and can position the destination X,Y to the next pixel in the previous or next row, if drawing in X major (|x2-x1| > |y2-y1|). A series of these commands can be used to draw lines which are X major, with X increasing or X decreasing. If the lines are Y major (|y2-y1| > |x2-x1|), the line can be constructed by drawing a series of vertical line intercepts. The destination X,Y after drawing of each vertical intercept can be positioned to the next row (up or down), and to the previous or next column by setting appropriate FLAGs. For efficiency, treat horizontal and vertical lines as special cases.

Draw X Major line

The example below describes a line drawn in the first octant. The start point is X1,Y1 and the end point is X2,Y2 with |X2-X1| > |Y2-Y1| and X2 > X1 and Y2 < Y1.

Algorithm:

```
x = X1;
dx = X2 - X1; dy = Y1 - Y2;
error = 2 dy - dx;
intercept = 0x10000;  /* preset y extent = 1, indicates X major */
while (x < X2)
{
    intercept += 1;
    if (error <= 0)
    ł
           error += 2 dy;
    } else
           error += 2 * (dy - dx);
           draw_pixels(intercept);
           intercept = 0x10000; /* preset y extent = 1, indicates X major */
    }
    x += 1;
}
if (intercept != 0x10000)
    draw_pixels(intercept);
```


Sample code: Draw X Major line

```
;fs= CmdPortSelector: selector points to the register base address
DwarXMajorLine
                proc
                         near
           ClipRectangle
                                              ;set clip rectangle if necessary
    call
    WaitCMDFIFO fs, FIF01_8TH
           ecx,F_XP+F_YN+F_CLIP+CMD_LINE
                                              ;Clip on, x positive,
    mov
                                              ;y negative, horizontal line
           ecx,gClipflag
                                       ;set clip flag
    or
           cl,RopValue
                                       ;move ROP into low byte
    mov
           fs:[FLAGs],ecx
                                       ;set flags register
    mov
           eax, COLOR1
                                      ;the draw color
    mov
    Set2WordsToReg32X1,Y1,bx
                                      ;ebx=(X1,Y1), X1 in low word
                                      ;load color
         fs:[FGColor],eax
    mov
           fs:[DestXY],ebx
                                      ;set start x,y
    mov
           eax,10000h
                                       ; intercept, preset y extent = 1, indi-
    mov
                                      cates X major
           si,X1
                                       ix = X1
    mov
           dx,X2
    mov
                                       ;
           dx,si
                                       ;dx=X2-X1
    sub
    mov
           bx,Y1
                                       ;
    sub
          bx,Y2
                                       ;dv=Y1-Y2
    add
          bx,bx
                                       ;
                                       ;2*dy
    mov
           di,bx
           bx,dx
    sub
                                       ;
           cx,bx
                                       ; error = 2*dy-dx
    mov
    sub
           bx,dx
                                       ;2 * (dy-dx)
DXL_loop:
           si,X2
                                       ; while (x < X2)
    cmp
    jge
           DXL_do_remaining
                                       ; {
    inc
           eax
                                ;
                                      intercept += 1;
           cx,0
                                      if (error <= 0)
    cmp
                                ;
    jq
           DXL_greter
                                ;
                                       ł
    add
          cx, di
                                      error += 2 dy;
                                ;
    jmp
           DXL_compare_done
                                ;
                                       } else
DXL_greter:
    add
         cx,bx ;
                     error += 2 * (dy - dx);
    mov
          fs:[XYExtents+EXEC_CMD],eax
                                              ;
                                                    draw_pixels(intercept);
           eax,10000h
                                                    intercept=0x10000
    mov
                                              ;
   ;
                  //reset intercept
DXL_compare_done:
                                                     }
                                              ;
    inc
           si
                                                    x += 1;
                                              ;
           DXL_loop
                                              ; }
    jmp
DXL_do_remaining:
          eax,10000h
    cmp
           DXL_done
                                              ; if (intercept != 0x10000)
    je
           fs:[XYExtents+EXEC_CMD],eax
                                            ;
                                                    draw_pixels(intercept);
    mov
DXL done:
    ret
DwarXMajorLine
                 endp
```

Note: The last pixel in never drawn. Each new line has to load a start X,Y.

Draw Y Major line

The example below describes a line drawn in the second octant. The start point is X1,Y1 and the end point is X2,Y2 with |X2-X1| < |Y2-Y1| and X2 > X1 and Y2 < Y1.

Algorithm:

```
y = Y1;
dx = X2 - X1; dy = Y1 - Y2;
error = 2 dx - dy;
intercept = 1;
                       /* preset x extent = 1, indicates Y major */
while (y > Y2)
{
    intercept += 0x10000;
    if (error <= 0)
    {
    error += 2 dx;
    } else
    {
    error += 2 * (dx - dy);
    draw_pixels(intercept);
    intercept = 1; /* preset x extent = 1, indicates Y major */
    }
    y -= 1;
}
if (intercept <> 1)
    draw_pixels(intercept);
```


Sample code: Draw Y Major line

;fs= CmdPortSelector: selector points to the register base address

```
DwarYMajorLine
                 proc
                        near
    call ClipRectangle
                                      ;set clip rectangle if necessary
    WaitCMDFIFO fs, FIFO1_8TH
    mov
           ecx,F XP+F YN+ CMD LINE
                                      ;Clip on, x positive, y negative
                                      ;set clip flag
    or
           ecx,qClipflaq
          cl,RopValue
                                      ;move ROP into low byte
    mov
          fs:[FLAGs],ecx
                                      ;set flags register
    mov
          eax, COLOR1
                                      ;the draw color
    mov
    Set2WordsToReg32X1,Y1,bx
                                      ;ebx=(X1,Y1), X1 in low word
        fs:[FGColor],eax
                                      ;load color
    mov
          fs:[DestXY],ebx
                                      ;set start x,y
    mov
                            ; intercept, preset x extent = 1, indicates Y major
          eax,1
    mov
          si,Yl
                                       iy = Y1
    mov
    mov
          dx.si
                                       ;
    sub
          dx,Y2
                                       ;dy=Y1-Y2
          bx,X2
    mov
    sub
        bx,X1
                                       ;dx=X2-X1
    add
         bx,bx
                                       :
    mov
        di,bx
                                      ;2*dx
    sub
          bx,dx
                                       ;
                                      ;error = 2*dx-dy
    mov
          cx,bx
                                      ;2 * (dx-dy)
          bx,dx
    sub
DYL_loop:
    cmp
          si,Y2
                                       ; while (y > Y2)
          DYL_do_remaining
                                       ; {
    ile
                                             intercept += 1;
    inc
          eax
                                       ;
    CMD
          cx,0
                                       ;
                                             if (error <= 0)
          DYL_greter
    jg
                                       ;
                                             {
          cx, di
                                             error += 2 dx;
    add
                                       ;
          DYL_compare_done
                                             } else
    jmp
                                       ;
                                       ;
DYL_greter:
                                              {
    add
          cx,bx
                                       ;
                                                    error += 2 * (dx - dy);
           fs:[XYExtents+EXEC_CMD],eax
                                                     draw_pixels(intercept);
    mov
                                            ;
    mov
           eax,1
                                       ;
intercept=1
                                       ;//reset intercept
DYL_compare_done:
                                       ;
                                             }
    dec
           si
                                       ;
                                             y -= 1;
          DYL_loop
    ami
                                       ; }
DYL_do_remaining:
    cmp
          eax,1
    je
          DYL_done
                                       ; if (intercept != 1)
          fs:[XYExtents+EXEC_CMD],eax
    mov
                                              ;
draw_pixels(intercept);
DYL_done:
    ret
DwarYMajorLine
                        endp
```

Note: The last pixel is never drawn. Each new line has to load start X,Y.

6.6 3D Functions

6.6.1 Overview

A 3D graphics pipeline contains two partitions, the geometry pipeline and the rasterization pipeline (see Figure 6-8, below). The determination of feature set and the trade-off between performance and design cost are made based on the requirements for the target market, and the computational and I/O bandwidth requirement analysis. The analysis assures the load-balancing between a given CPU and the graphic processor, and the performance-balancing between the rendering engine and I/ O devices including bus and memory. Based on this analysis, the host CPU performs the geometry portion and the SM3110's 3D engine accelerates the rasterization pipeline as shown in Figure 6-8, below.

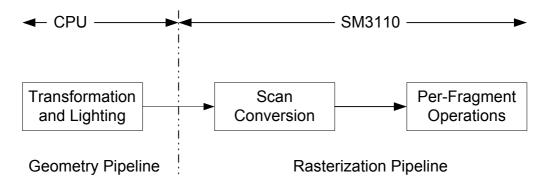
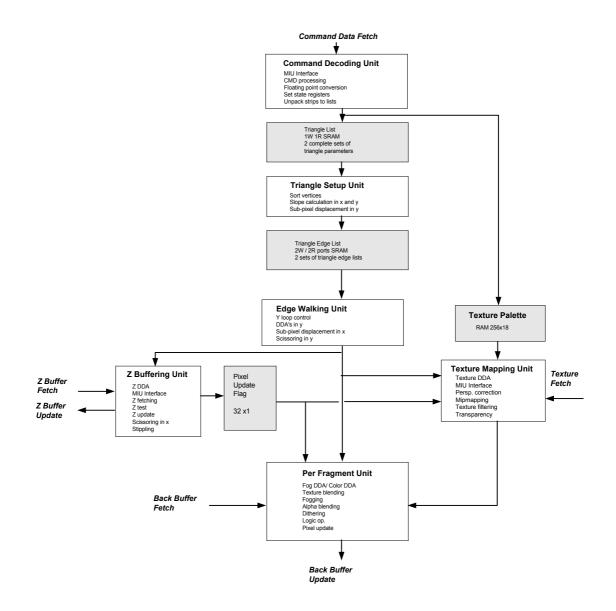
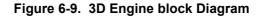


Figure 6-8. 3D Functions Partition

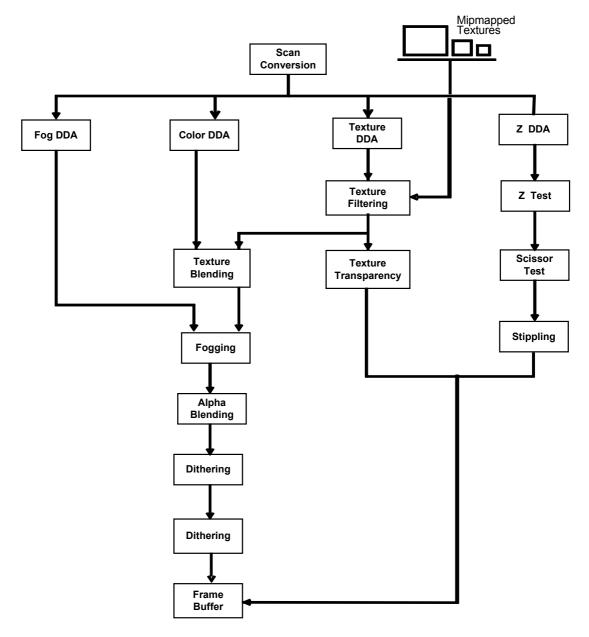
6.6.1.1 Feature Set


The SM3110 3D rendering engine provides high-performance rendering of 3D primitives with a complete feature set of rendering functions:


- Primitives
- Triangle (including setup and sub-pixel displacement)
- Point
- Texturing
- On-chip texture memory
- Perspective correction
- Pixel-level mipmapping
- Filtering: nearest-neighbor, bilinear, trilinear
- Texture transparency
- Texture blending
- Flat and smooth (Gouraud) shading
- Fogging
- Z buffering
- Scissoring
- Stippling
- Alpha blending
- Dithering
- Logic operations
- Double buffering

6.6.1.2 3D Rendering Engine

The 3D driver interfaces with the 3D engine by way of a 3D command FIFO in the frame buffer memory, which allows decoupling of driver and rendering functions. Figure 6-9 shows the block diagram of the 3D engine.



6.6.1.3 3D Rasterization Pipeline

The figure below below shows functions within the 3D rasterization pipeline.

Programmer's Reference

The order of rendering functions is critical to rendering accuracy and the diagram below represents the 3D pipeline.

					1.011					· ·			1.1.1	
SCISV	ztst	SCISX	stip	tex	tfil	ckev	zwrt	tmod	SDEC	toa	clmp	bind	dith	rop
36/37	2ເວເ	30137	้อแม				ZVVI L	unou	3000	IUU			ului	
,										- 5				

where:

italics - means pixel may be rejected at this step

underline - means only do this step if previous tests pass

stip - stipple test

ztst – z test

- tex texture mapping
- tfil texture filtering
- tmod texture modulation with diffuse color
- spec specular color
- fog apply fog
- clmp clamp results
- blnd blend source with destination
- dith apply dithering pattern
- rop apply raster operation

zwrt - write z value to z-buffer (if enabled)

scisy, scisx – scissor in y and x

ckey – color key

(Refer to the rasterization pipeline diagram above.)

- 1. Scissoring in Y Failed test = reject pixel (updating interpolants).
- 2. Perform z-buffer test (only set pass/fail).
- 3. Scissoring in X (only set pass/fail).
- 4. Perform stipple test (only set pass/fail).

5. If previous pixel tests pass, do texture mapping, repeat for as many samples as is required by step six.

Look up RGB texture value from q, u, v corresponding to x, y. If the texture has an alpha channel, read the A value, otherwise set A to 1.0

- 6. If previous pixel tests pass, perform bi- or tri-linear filtering operation on RGBA values.
- 7. If previous pixel tests pass, do alpha related visibility tests.

If chroma key transparency is enabled and the RGBA texture color lies inclusively within the chroma key range, set pass/fail for this pixel. If 'alpha test' enabled, set pass/fail for pixel, based on alpha value non-zero/0

- 8. If previous pixel tests pass, write z value to z-buffer if z-write is enabled.
- Modulate (see blending in a following step) texture color with diffuse color to get srcColor. If MODULATE_ALPHA is set, do the same for the alpha channel as well. Update color interpolants after this step.
- 10. Add specular color to srcColor. The alpha channel is not affected by this stage. This stage may produce results greater than 1.0. Update specular color interpolants.
- 11. Apply RGB fog. This stage may produce results greater than 1.0
- 12. Clamp colors to range [0.0,1.0).
- 13. Alpha blend srcColor with destColor to get finalColor.
- 14. Convert finalColor to destination pixel format, applying dither pattern.
- 15. Apply raster operation. newDest = src Rop dest.
- 16. Write final color to destination at x, y.

6.6.2 3D Engine Operation

6.6.2.1 Initialization

All of the initialization of the SM3110 3D engine is done by the driver. The reason for this is partly because the BIOS doesn't have access to the 3D register space and partly because the driver is more flexible for handling different initialization conditions.

Prior to activation of the 3D driver, the 2D driver has already set up 32-bit linear pointers to the 3D register space, 3D command FIFO port and frame buffer memory. Refer to the 2D section for more information on this procedure. 3D registers are loaded by either using the memory-mapped byte address (minimum 16-bit reads/writes) or via the register load command in the 3D command FIFO (see that section for more details).

On power up, most registers in the SM3110 have a predefined initial state. Refer to the SM3110 register section for more information. The driver can always return the hardware to this initial state by toggling the reset bit in the Command Decode Unit (CDU) control register (0x0038).

Initialization consists of setting up certain of the state registers prior to do 3D rendering. Note that as part of context creation, the driver will initialize virtually all the registers, but the registers below are set up as part of driver initialization, prior to any 3D contexts being created. (Register addresses below are offsets within the 3D control register space of the SM3110 local address space. See the Section 4.2.2, 3D Control, for more details.)

CDU control	+038H	set to stop while initializing other regs, then start
Cmd FIFO base	+198H	internal memory start of command FIFO, 16KB aligned
Cmd FIFO size	+1C8H	size of command FIFO in bytes, 16KB aligned
Cmd FIFO write ptr	+1C0H	set to 0
Cmd FIFO read ptr	+1C4H	set to 0
Texel base	+0E6H	set to 0 (see texture loading for how texture addresses
		set up)
Palette index offset	+0E4H	set to 0
Texture loading base	+1E8H	set to 0
Texture loading end	+1ECH	set to 0
DRAM control	+1B9H	set according to DRAM parameters (but note that texture
		cache invalidate bit is used during rendering)
Internal memory timing	+1BAH	set according to DRAM parameters
Address mapping	+1A0H	allows memory (in 2MB increments) to be marked as
	1A7H	internal/external (n/a for SM3110) or relocated. driver
		currently direct maps memory.

The driver initializes the following registers:

For context creation, that is, prior to doing 3D rendering, it will be necessary to set up all the registers associated with the desired rendering mode. See the SM3110 register section for more information on the meaning and syntax of these registers. These consist of the following:

Registers applicable to 3D rendering context (offset within 3D Control region)

Modes		
Vertex Format	+000H	defines primitives to be rendered
Control	+0B8H	enables for scissors, texture, perspective correc
		tion, mipmapping, subpixel displacement, specu
		lar, fog and flat shading
Texture		
Texture Format	+0E0H	format of texture
Texture Map Size	+0E2H	log ₂ of texture height and width
Texture Wrap	+0F4H	texture wrap mode (clamp, repeat, mirror)
Texture Interpolation	+0F8H	alpha test enable, interpolation in uv space (near
· · · · · · · · · · · · · · · · · · ·		est neighbor, bilinear) and between mipmap lev-
		els (nearest neighbor, linear)
Texture Transparency Color	+0C0H	range of colors for texture transparency
	+0C4H	
Texture Transparency Enable	+134H	enables texture transparency
Texture LOD Table	+580H -	see Texture Loading section for details
	+5A8H	
Texture Blend	+150H	enable, alpha and color blend modes
Texture Palette	+C00H-	256 entry texture palette
	+000-	250 entry texture palette
	+FFCH	
Visibility		-
Viewport Limits	+080H	viewport top, bottom, left and right edges
	+082H	
	+100H	
	+102H	
Z Buffering	+138H	enable, write enable and z test function
Stipple	+120H	enable and x,y pattern offsets
Stipple Mask	+400H -	32x32 bit stipple mask
	+47CH	
Buffers	147011	
Z Buffer Stride	+130H	stride of z buffer
Back Buffer Stride	+170H	write enable and stride
Pixel Format	+174H	format of back buffer
Back Buffer Base Address	+180H	back buffer address relative to frame buffer start
Z-Buffer Base Address	+188H	Z-buffer address relative to frame buffer start
Pixel Characteristics	. 10011	
Fog Color	+158H	RGB fog color
Alpha Blend	+15CH	enable, source and destination blend controls
Dither Enable	+160H	enables dither
Logic Op	+164H	enable and logic op
	10411	

6.6.2.2 3D Command FIFO

The primary interface of the driver with the 3D hardware is through the 3D command FIFO. This includes loading of state registers, primitive commands, synchronization and DMA. Using the command FIFO serializes processing of commands and allows for decoupling of driver and rendering processing. The actual command FIFO is allocated in frame buffer memory (see Initialization), but is written to via a port, which is a fixed offset relative to the Control Address Space of the SM3110. Any commands written to the 4KB 3D command FIFO port are added to the next available location in the 3D command FIFO. Thus, all the FIFO management is handled by the hardware. A diagram of the operation of the 3D command FIFO is shown in the figure below.

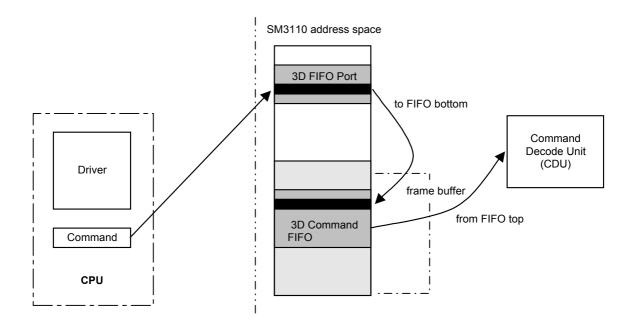


Figure 6-11. 3D Command FIFO

The driver only needs to ensure that sufficient FIFO entries are available prior to writing. This is done as shown in the following code sample:

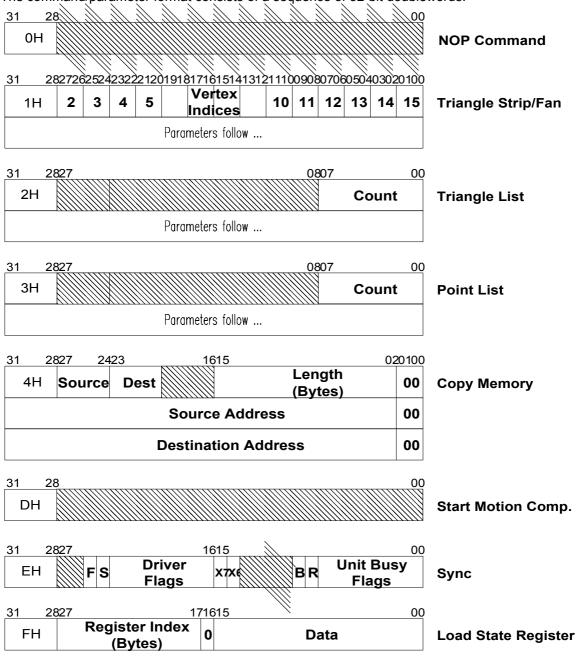
```
// Read fast status register
regVal = ReadRegister(0x1F0);
// now compute remaining DWORDS in FIFO
remDWORDS = (FIFOSIZE - regVal.fifoStatus + 255)/sizeof(DWORD)
```

where:

FIFOSIZE - total size of 3D command FIFO in bytes

255 - is added because the read is only accurate to 256 byte units

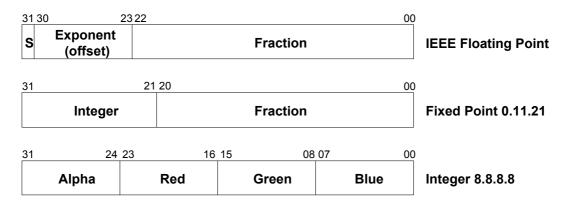
It is recommended that the reads to the FIFO status be minimized by keeping track of the available DWORDS in a local variable and only reading again when this value is depleted.


When writing to the 3D command FIFO port, normal considerations regarding optimal PCI burst lengths should be kept in mind. That is, it may be more efficient to buffer a series of commands in CPU memory and then write them all at once.

It should also be noted that the SM3110 hardware reads the FIFO on 128-bit (4 DWORD) boundaries, which means that alignment must be kept in mind to ensure that the FIFO is able to be emptied, for example, on frame boundaries. In order to do this, 4 NOP command DWORDs should be written to the FIFO at end of frame. This will ensure that no non-NOP commands are left in the FIFO (it doesn't matter if NOP commands are left there).

6.6.3 3D Command Format

The command/parameter format consists of a sequence of 32-bit doublewords:



31:28	Comma	nd				
	Value	Semantics				
ſ	0H	NOP.				
	1H	Triangle Strip/Fan.				
	2H	Triangle List.				
	3H	Point List.				
	4H	Copy Memory.				
	5-CH	H Reserved.				
	DH	Start Motion Compensation Command				
	EH	Control/Sync/control field in immediate data field.				
	FH	Load State Register.				

6.6.4 3D Primitive Commands

The SM3110 handles 3 types of primitives: triangle lists, triangle strips/fans and point lists. Lines are not directly supported but may be constructed in software using triangles. One significant consideration is that the SM3110 requires the extent of primitives to be less than 127 in x and y. Primitives which exceed this limit, must be subdivided in software. Also, backface culling and clipping must be done in software, as this is not done in the SM3110. Vertex order is not important.

All parameters/coordinates are represented in floating point using IEEE single precision format (1.8.23). An optional fixed point (11.21) format is also provided. All color/pixel data is represented as integer 8.8.8.8.

Figure 6-13.	Parameter Formats (in Memory)
--------------	-------------------------------

6.6.4.1 Triangle Strip/Fan

Up to 15 triangles may be specified in one triangle strip/fan list. The last valid vertex is indicated by specifying 0 in the successive vertex number field.

y the first three vertices. a triangle strip or fan for the
a triangle strip or fan for the

+4

The offset of the first parameter of each successive vertex is

(3+n-2)×Size_{VERTEX_PARAMETER_LIST}+4,

where *n* is the triangle number (starting from 1).

6.6.4.2 Triangle List

Field	Function
31:28	Command. 2H.
27:08	Reserved.
07:00	Number of Triangles.

6.6.4.3 Point List

Field	Function
31:28	Command. 3H.
27:08	Reserved.
07:00	Number of Points.

Vertices can contain different numbers of elements based on the setting of the bits in the vertex format register (see 4.2.2.1, Vertex Format). The table below shows valid combinations:

	texture type	fog	specular	coordinate	color
х				xy,xyz	
у				xy,xyz	
Z				xyz	
color					rgb,argb
specular		fog	specular rgb		
u	uv,uvwmip				
V	uv,uvwmip				
u/w	uvw,uvwmip				
v/w	uvw,uvwmip				
rhw	uvw,uvwmip				

Some special considerations should be made with regard to some of the primitive characteristics. These are noted below:

flat shading – SM3110 implements this by assuming that the color and alpha are the same in all 3 vertices and then not interpolating between them.

fog – the fog values in the vertices are treated as though a value of 0x00 is no fog and a value of 0xFF is fog color only

z scaling – the range of z values expected by the hardware is from 0 to 65535.99999.

- alpha test the SM3110 doesn't support a full alpha test, but it does support the alpha != zero case by setting the bit in the texture interpolation control register (+0F8H).
- texture uv and wrap the SM3110 has 10 integer bits for u,v addressing. This includes the texture width/height (which must be a power of 2, but not necessarily square) and any wrap bits. Thus, a 64-texel wide texture can have a wrap of 16 in the u direction (and similarly for v). Note that u,v coordinates supplied with primitives must be pre-multiplied by the texture width/height.

6.6.5 Copy Memory and DMA Command

The SM3110 3D engine has DMA capability in the form of the copy memory command (0x4) for the 3D command FIFO. This consists of a source and destination code and addresses, and a length in doublewords. Some useful ways in which this command can be used include:

load local memory from PCI or AGP space (e.g., for texture DMA)

pattern fill local memory from register (does 128-bit operations)

set driver value in PCI or AGP space (by loading value in fill register, then transferring to local memory and from local memory to PCI or AGP space) for flagging when command FIFO operations are complete

The table below specifies the source and destination addresses and transfer length for the internal DMA. All internal addresses are 23 bits relative to the PCI base address, all external (AGP/PCI) addresses are linear 32 bits.

	field	function						
+0	31:28	Comma	and. 4H .					
	27:24	Source	Flags.					
	23:20	Destina	tion Flags.					
		value	semantics					
		0H	Internal non-aligned. Within SM3110 internal embedded DRAM.					
		1H	Internal, aligned to natural 16B boundary.					
		2H	State Registers except for Palette. Destination only.					
		3H	Palette. Used to load palette RAM, 18b per clock. Destination only.					
		4H	AGP/PCI Linear.					
		5H	Reserved.					
		6H	32b Fill Register. Source only. Used to fill memory.					
		7H	Internal. Translate (texture) addresses. Destination only.					
		8-FH	Reserved.					
	bits	field						
	19	Transfe	r Request. Must Be One for transfer to occur.					
	18:00	Length	Length in doublewords-1					
+4	31:00	Starting	Source Address					
+8	31:00	Starting	Destination Address.					

When the palette is the destination, bits [09:02] of the destination address specify the palette index. Bits [01:00] specify the bytes within the palette and should be set to 0, byte 0 is Blue, byte 1 is Green and byte 2 is Red, byte 3 is not used. The source (internal or external) and destination palette addresses must be doubleword aligned. The matrix of source and destination address spaces is shown below:

	Source			
Destination	0-Internal	1-Internal	4-External	6-Fill
	Non-aligned	Aligned	AGP/PCI	Register
0 - Internal Non-aligned	Yes	No	Yes	Yes
1 - Internal Aligned	No	Yes	No	Yes
2 - State Registers	Yes	No	No	No
3 - Palette RAM	Yes	No	No	No
4 - AGP/PCI	No	No	No	No
7 - Internal Texture	Yes	No	Yes	No

Table 6-3. DMA Transfer Source/Destination Matrix

Restrictions:

Transfers performed between Internal Aligned source and destination will be done at a 16 bytes per transfer.

Transfers between the 32-bit Fill Register and Internal Aligned destination will be done at 16 bytes per transfer.

The palette RAM cannot be the destination addressed through the State Register space; it must be accessed only through its own dedicated space.

All other transfers are performed at 4 bytes per transfer.

When setting up DMA operations in the 3D command FIFO, care should be taken with regard to other commands in the FIFO. Since there is only one DMA engine, each subsequent DMA command will wait until the previous DMA command is complete; that's not true for other, non-DMA commands. It may be necessary to put a sync command in the FIFO after the DMA command to wait until the DMA engine is idle before processing subsequent commands in the FIFO. For example, this would be the case if a DMA was being used to load a texture and the next command in the FIFO was a primitive which used the texture. See the synchronization command section for information on how this is handled.

Note that when DMAing in PCI space, physical addresses will be needed in the address field. If a transfer larger than a physical page (4Kbyte) is desired, simply use multiple DMA commands. If it is necessary to wait for this chain of DMAs to be done, it is only necessary to put a sync command after the last DMA. This could be used for texture loading, as described in the section on texture loading.

Programmer's Reference

6.6.6 Synchronization Command

Synchronization is performed by the appropriate use of the Sync command. A conditional wait is performed on specific conditions set by internal and external hardware or driver software. When the conditions are met the wait terminates and command interpretation and execution resumes. The driver specifies a set of conditional flags that may be tested. A mask function performs the following operation:

RESULT = OR_{i=23 to 00} [Mask_i AND Flag_i]

When the condition becomes "true" the wait terminates.

The wait condition is defined as follows

```
condition = DrvFlg3 & cmdreg[19] |

DrvFlg2 & cmdreg[18) |

Sigl2D & cmdreg[17] |

Sync2D & cmdreg[16] |

(fc_rbusy | fc_wbusy) & cmdreg[11] |

mcmem_busy & cmdreg[10] |

busy & cmdreg[9] |

bd_pipe_busy_m & cmdreg[7] |

fd_pipe_busy_m & cmdreg[5] |

zd_pipe_busy_m & cmdreg[5] |

zd_pipe_busy_m & cmdreg[4] |

(td_ag_pipe_busy_m | td_tp_pipe_busy_m) & cmdreg[3] |

ed_pipe_busy_m & cmdreg[2] |

sd_pipe_busy_m & cmdreg[1] |

cdu_busy & cmdreg[0];
```

CDU stall = cmdreg[25] & (cmdreg[24] & ~condition or ~cmdreg[24] & condition)

Some of the useful events are covered in the sections on DMA, 2D/3D synchronization and performance issues. In addition to these, it is possible to sync on driver flags which are set in registers 0x024 and 0x026, or on external event pins.

Synchronization Command EH

	Field	Function				
+0	31:28	8 Command. EH. 6 <i>Reserved</i> .				
	27:26					
	25	Function.				
		Value Semantics				
		0 NOP. continue command interpretation				
		1 Sync: wait until condition, then cont	inue command interpretation.			
	24	Condition Sense.				
		Value Semantics				
		0 Not Result.				
		1 Result.				
	Field	Function O Reserved.				
	19:18	DrvFlags. Correspond to the Driver Flags in CDU Register bytes 027H - 024H				
		Value Semantics				
		0 Driver Flag Byte Bit 0 is '0'.				
		1 Driver Flag Byte Bit 0 is '1'.				
	Field	Function				
	17	2D Signal				
	1	Value Semantics				
		0 Signal to 2D is low				
		1 Signal to 2D is high				
	Field	Function				
	16	2D Synchronization				
		Value Semantics				
		0 2D has not signalled 3D				
		1 2D has signalled 3D				

Synchronization Command EH continued

Field	Function			
15:12	Reserved.			
	Format Conversion.			
10	Motion Compensation.			
09:00	Hardware Status Mask.			
09	Busy.			
	Running.			
07	Direct Memory Access.			
06	Reserved.			
	Per Fragment Unit.			
04	Z-Buffering Unit.			
03	Texture Mapping Unit.			
02	Edge Walking Unit.			
01	Triangle Setup Unit.			
00	Command Decode Unit.			
	Value Semantics			
	0 Not Busy.			
	1 Busy.			

6.6.7 Load State Register Command

Register loading is supported by the load state register command. Using the 3D command FIFO to load registers is primarily useful because it allows serialization of state with primitives. The format is shown below.

This command is used to load state and control registers, and internal arrays.

+0

Field	Function
31:28	Command. FH.
27:16	Register Index. Bit [16] must be 0.
15:00	Data

6.6.8 Texture Loading

The SM3110 requires textures to be stored in an optimized format in frame buffer memory. A number of texture formats are supported (see 6.6.10, Buffer Issues) and mipmaps are supported, with the restriction that the mipmaps (as well as the start of non-mipmapped textures) begin on 2KB byte boundaries (although sharing of lower level mipmaps within a single 2KB block is possible, as described below).

The basic mechanism for loading textures involves setting up certain registers and then transferring the texture data, either by memory-mapped write to frame buffer memory, or via DMA (see DMA section). This is done using the Load State Register command. The following registers must be set up for texture loading:

texel size	0x1E0	texture format
texture base	0x1E8	base address for texture translation (s/b 0)
texture end	0x1EC	end address for texture translation (s/b 4MB)
tex param (shift)	0x1E4	max(0, log ₂ u-bsxe)
		where:
		$\log_2 u$ is $\log_2 of$ texture width
		bsxe is based on texture format bit width (see Table 6-5)
tex param (row V shift)	0x1E4	max(0,(log ₂ u - log ₂ uoffset)) + rowVShiftOffset
		where:
		$\log_2 u$ is $\log_2 of$ texture width
		log ₂ uoffset is based on texture format bit width (see table)
		rowVShiftOffset is based on texture format bit width
		(see Table 6-5)
tex param (U page offset)	0x1E4	offset from start of page (normally 0)
tex param (V page offset)	0x1E4	offset from start of page (normally 0)
tex param (page address)	0x1E4	destination address in 2K byte units

Table 6-4. Texture Loading Registers

	1 bit	2 bit	4 bit	8 bit	16 bit
bsxe	5	4	3	2	1
log ₂ uoffset	7	7	6	6	5
rowVShiftOffset	0	1	1	2	2

Table 6-5. Texture Loading Register Values

When loading textures, note that the actual destination address goes in the texture parameters' page address, but the destination for memory-mapped write or DMA purposes should always be the start of frame buffer memory. This allows access to the entire 4MB internal memory space in the SM3110. The address translation done by the SM3110 loading will then translate and correctly load anything sent between its base and end addresses (which is why they should be 0 and 4MB, respectively). Normally, textures (or mipmap levels of textures) will start at the beginning of the 2KB page, but in some cases, the driver will share the 2KB page of the lowest level mipmap which doesn't take an entire page. In this case, the u and v page offsets can be used to specify the starting point.

When primitives are rendered using textures, similar information is required to be loaded into the state registers, including texel format (0x0e0) and a similar value to the texture parameter register above, but with an entry for each mipmap level (texture LOD table, 0x580-0x5a8). In addition, a texture size register is required (0xe2), with the log_2 values of the texture width (u) and height (v).

It is also necessary to be aware of the texture cache invalidate bit (0x1b9), which will need to be toggled if the texture cache contents are no longer valid. This could happen if the contents of an existing texture are reloaded.

Texture palettes are loaded using the load state register 3D command FIFO command. For SM3110, texture palette colors are 6 bits each (R,G,B), so an 18-bit data field is used for this register load command (vs. other commands, which have a 16-bit data field).

6.6.9 2D/3D synchronization

Because the SM3110 has separate FIFOs for 2D and 3D, a mechanism is provided to ensure synchronization between the two. The capability of adding a synchronization command to either FIFO, which waits for a signal from the other is available. The basic mechanism is as follows:

```
// To have 2D wait on 3D, add the following to the 2D command FIFO:
2D command 0xd
// To have 2D signal 3D, add the following to the 2D command FIFO:
2D command 0xc
// To have 3D wait on 2D, add the following to the 3D command FIFO:
3D command 0xe, sync2D = 1, function = 1, sense = 1
load state register 0x20 with 0 // this is to clear 2D signal after rcvd
// To have 3D signal 2D, add the following to the 3D command FIFO:
load state register 0x22 with 1
load state register 0x22 with 0 // this is to clear 3D signal after sent
```

These synchronization commands are useful for events which are anticipated, for example on a once-per-frame basis. If 2D commands were used to clear the z-buffer (actually there are more efficient 3D commands for this, see DMA section), the 2D blt command could be followed by a signal3D command in the 2D command FIFO and a waiton2D in the 3D command FIFO. That way, no 3D rendering commands would be processed until the z-buffer BLT was complete.

More often, it is necessary to ensure that one or the other engine is inactive before proceeding. In this case, it is necessary to wait for the corresponding FIFO to be empty, as shown below:

// To wait for 3D engine to be idle and FIFO empty: flush 3D FIFO // add 4 null commands to FIFO, see 3D command FIFO desc. poll 3D engine busy bit of register 0x1FO until clear

// To wait for 2D engine to be idle and FIFO empty: poll 2D engine busy bit of register 0x8F0 until clear

6.6.10 Buffer Issues

6.6.10.1 Buffer Alignment

The following table shows required alignments for 3D buffers on SM3110:

Buffer	Alignment	Pitch Alignment
front buffer/back buffer	4K bytes	16 pixels
z-buffer	4K bytes	16 pixels
3D command FIFO	16K bytes	n/a
textures	2K bytes	n/a

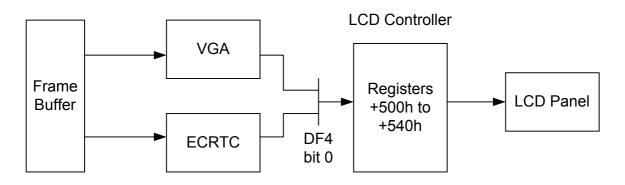
6.6.10.2 Buffer Formats

The following table shows available formats for buffers on SM3110:

Buffer	Formats
front buffer/back buffer	RGB0555, RGB565, ARGB4444, ARGB1555, RGB888,
	ARGB8888
z-buffer	16 bit
textures	CLUT1, CLUT2, CLUT4, CLUT8, RGB0555, RGB565, ARGB4444,
	ARGB1555

6.6.11 Performance Issues

A number of the performance issues in the SM3110 3D engine are related to general 'good practice' for 3D applications. This includes minimizing state changes and minimizing texture loading. For state changes, the 3D engine only has one set of state registers, so it is necessary to make sure the 3D pipeline is idle before modifying the state registers. This is done by adding the following command to the 3D command FIFO:


// To wait for 3D pipeline idle control/sync command with sync bit and bits for Per Fragment Unit, Z-Buffering Unit, Texture Mapping Unit, Edge Walking Unit, Triangle Setup Unit and Command Decode Unit set

Another bottleneck could come from the fact that the 3D engine will stall if it detects that the bounding boxes for 2 triangles overlap, in order to prevent read-after-write consistency errors. This function can be enabled under software control (register 0x004). If it is known that 2 triangles will not overlap (for example in a strip/fan) this function should be turned off.

6.7 LCD Panel Programming

The SM3110 supports an LCD flat panel display. The supported panel sizes are 640x480, 800x600, 1024x768, and 1280x1024. Both DSTN and TFT panels with different color bits are also supported. The following block diagram shows the display subsystem of SM3110.

Figure 6-14. LCD Display Subsystem

6.7.1 LCD Flat Panel Registers

The following registers are LCD flat panel related. These are offsets within the 2D Control Address (see Section 4.2.1, 2D Control).

LCD Type and Miscellaneous - +510h

Bits 2-0 is the panel stretch ratio used for standard VGA modes. Values must be found using trial and error. When stretching is not needed, 0 is programmed.

Bits 7-4 define the panel type. The SM3110 family currently supports 7 types of panels.

Other bits need to be programmed according to the data sheet of the particular LCD panel.

LCD Image Compensation – +504h

Bit 7 and bit 5 enable or disable stretching for vertical and horizontal, respectively. This register will take effect only in standard VGA modes.

Dithering and Frame rate Modulation - +514h

Bit 7 and 6 define the number of frames used for frame rate modulation. More frames tend to result in better quality. Bits 5-3 control the dithering and are used if the color depth of the current mode is greater than that of the panel. Again, different values should be tried out to determine the best display quality for each particular panel.

DSTN Buffer Starting Address – +520h

When a DSTN panel is selected, some additional memory in the frame buffer is required to store a half-frame of the panel display data. This register specifies the starting address from the beginning of the frame buffer. The formula for the size required is as follows.

Size = Panel Width * Panel Height * $3^1 / 8^2 / 2^3$

- ¹. DSTN is 3 bits per pixel.
- ². There are 8 bits per byte.
- ³. Half frame.

LCD CRTC Registers - +530h ... +53Ch

These registers contain the same values from VGA CRTC or ECRTC except for register 534 bits 8-0 and register 53C bits 10-0, which are panel width and height, respectively. Note that the horizontal parameters are counted by characters, that is, they need to be divided by 8.

LCD Adjustment Control - +540h

This register is used to fine-tune the display image size and centering. Each panel has different characteristics and needs to be tuned to get the best display image size and positioning.

ECRTC Stretch Register – +EE4h

This register is used to stretch the display image under enhanced mode. Each value represents a different stretching ratio. There is a small, fixed set of stretch ratios defined for vertical and horizontal stretching. The closest value is picked to achieve the maximum stretch ratio, i.e., the largest possible image for the given panel resolution.

6.7.1.1 Initialization

During power up, only register 510 (LCD Type and Misc. Register) needs to be set according to the panel. If the panel is DSTN, register 520 (Base Address Register) needs to be programmed, too. Sufficient frame buffer memory needs to be reserved for DSTN panel to display properly.

6.7.1.2 Set to Desired Mode

Setting to a desired mode requires programming LCD-related registers as well as VGA CRTC or ECRTC registers. DCLK (dot clock – register 90, 91,and 92) needs to be programmed accordingly, too.

6.7.1.3 Standard VGA Modes

To set to standard VGA modes, the standard VGA CRTC registers are programmed as usual. Registers +530h to +53Ch need to be programmed according to the panel size. Use register 504 to enable or disable stretching. If stretching is disabled, the display image will be centered by default. Also use registers 530 to 540 to adjust the display image to desired position.

6.7.1.4 Enhanced Modes

No matter which enhanced mode, the timing parameters of the panel resolution have to be programmed into ECRTC registers as well as registers 530 to 53C. Refresh rate has to be 60Hz. For example, a panel with size of 1024x768 needs to use the parameters from the 1024x768 60Hz portion of the table. Any mode with resolutions higher than the panel size can't be set.

To center the display image, view port registers (E30 to E34) need to be programmed by the following formula:

View port start = (panel size - real resolution) / 2

View port end = view port start + real resolution

To stretch the display image, register 504 has no effect. Instead, register EE4 is used. The following tables list all the possible stretch ratios to be programmed.

Programmer's Reference

Mode Width	Panel Width	Ratio	Result Width	Program Value
640	800	4 -> 5	800	3
640	1024	5 -> 8	1024	4
720	1024	3 -> 4	960	2
800	1024	25 -> 32	1024	7
640	1280	1 -> 2	1280	1
720	1280	75 -> 128	1230	8
800	1280	5 -> 8	1280	4
1024	1280	4 -> 5	1280	3

Table 6-6. Horizontal Stretch Ratio

Table 6-7. Vertical Stretch Ratio

Mode Height	Panel Height	Ratio	Result Height	Program Value
400	600	3 -> 4	533	2
480	600	4 -> 5	600	3
400	768	75 -> 128	682	8
480	768	5 -> 8	768	4
600	768	25 -> 32	768	4
400	1024	15 -> 32	853	5
480	1024	15 -> 32	1024	5
600	1024	75 -> 128	1024	8
768	1024	3 -> 4	1024	2

For some resolutions, it is not possible to stretch to the exact panel size. In this case, the closest ratio is picked. It is still necessary to program viewport registers to center the image after stretching. Again, registers 530 to 540 can be used to fine-tune the display image to the desired position.

6.7.1.5 Set Mode Sequence

The following describes the sequence of set mode:

```
Turn off screen through sequence register - 3C4 index 1 bit 5
If(Standard VGA Mode)
    {
    Set standard VGA registers - 3C4/5, 3D4/5, 3C0/1, 3CE/F, etc. according to
    the mode
    Initialize palette if necessary - 3C8, 3C9
    Turn on or off stretching - 504
    }
else// Enhanced mode
    Disable ECRTC0 - program 0 to DF4
    Define a surface for display - A00 ... AF0, A04 ... AF4
    Program channel surface index register - B34
    Program display format - D30
    Program enhanced dot clock - 090, 091, 092
    Put correct timing parameters into ECRTC registers - E80 ... E94
    Program display view port registers - E30...E34
    Initialize palette if necessary - 3C8, 3C9
    Program stretch register according to Table 6-6 and Table 6-7 - EE4
    Enable ECRTC0 - Program 5 to DF4
    ł
Program LCD dithering register - 514
Program LCD timing registers - 530...53C
Use LCD Adjustment Control Register to center the display image - 540
```


6.8 Dual View

6.8.1 Overview

The SM3110 supports two display subsystems. They can be set up to display the same content from the same frame buffer location. This is called simultaneous view. They can also be set up to display the same or different portions of frame buffer with different refresh rates and color depths. This is called dual view. (Support for dual view is provided partly by the SM3110 hardware and partly by the host operating system; if the operating system does not allow a single graphics chip to drive two displays, this feature is not available.) The following diagram shows the relationship of these two display subsystems.

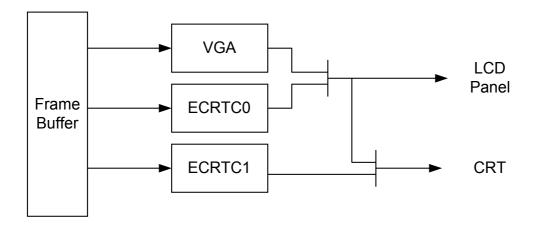


Figure 6-15. Dual View Mechanism

6.8.2 Enabling Second Display

Enabling the second display involves the following registers:

Second Dot Clock - 1090, 1091, 1092

Correct clock rate needs to be set for different modes and refresh rates.

Surface/Channel/Format registers - A00...AF0, B84, 1D30

A different surface memory has to be selected and programmed. Channel index register B84 has to be programmed to the selected surface index. Also register 1D30 (display channel format) needs to be programmed to the correct format according to the mode.

Display 0 and 1 control registers – DF4 and 1DF4

Set bit 4 of DF4 to 1 to hook the second display output to ECRTC1. Also set 1DF4 to 5 to enable ECRTC1.

Double Scan and Sync Polarity Registers – 1DF5, 1DF6

These two registers control both horizontal and vertical double scan and polarity according to each mode.

ECRTC1 View Port and Timing registers – 1E00...1E94

ECRTC1 supports only CRT, so no LCD consideration is involved. These registers can be set to different resolution and refresh rates.

6.8.2.1 Enable Simultaneous View

Bit 4 of Display 0 Control Register (DF4) enables dual view. Set it to 0 will enable simultaneous view. Everything displaying on the first display will show up on the second display, too.

6.8.2.2 Enable Dual View

The following sequence will enable dual view:

```
Set to simultaneous view - turn off DF4 bit 4
Disable ECRTC1 - program 0 to 1DF4
Define a surface - A00...AF0, A04...AF4
Program channel surface index register - B84
Program second display format - 1D30
Program second dot clock - 1090, 1091, 1092
Put correct timing parameters into ECRTC registers - 1E80... 1E94
Program second display view port registers - 1E30...1E34
Enable ECRTC1 - Program 5 to 1DF4
Enable dual view - turn on DF4 bit 4
```


6.9 Motion Compensation

The SM3110 supports Motion Compensation (MC) hardware acceleration when displaying MPEG-2 video data. While the graphics chip is performing motion compensation, the rest of video decoding (variable length decoding, inverse scan, inverse quantization and Inverse Discrete Cosine Transform (IDCT)) is done by a software client (e.g., SoftDVD®).

6.9.1 Overview

MPEG-2 uses three kinds of picture storage methods. Intra (*I frames*), Predicted (*P frames*) and Bi-directional (*B frames*). Intra frames are frames coded as standalone images, very much like JPEG pictures. They allow random access points within a video steam and create a reference frame from which other frames are built. In general, an I frame will occur around twice a second. Predicted frames contain motion vectors describing the difference from the closest previous I frame or P frame. This forward prediction allows for greater compression than with I frames. Bi-directional frames are like P frames in that they use motion vectors, but with B frames, motion vectors are generated by looking both forward and backward. This forward and backward referencing allow B frames to have the greatest compression ratio. Figure 6-16 shows the data flow during this process.

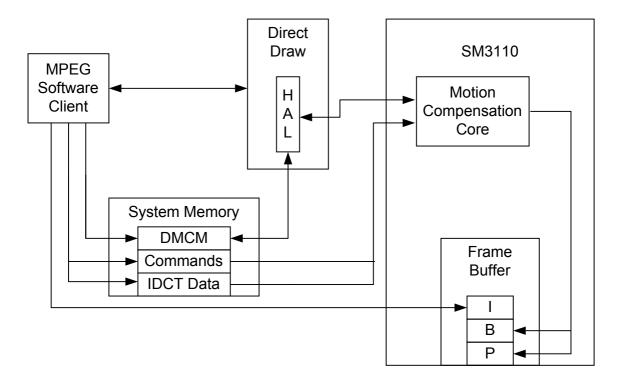
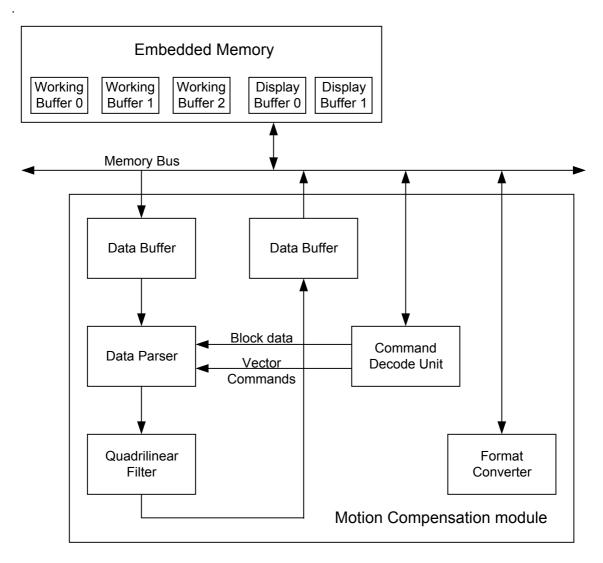


Figure 6-16. Motion Compensation Dataflow

Microsoft's DirectDraw is used as the interface between the MPEG software client and the motion compensation core. The block diagram shown above illustrates the data flow. The client and the driver communicate following the steps shown below.


	Client	Driver
1	Direct Show - Tell driver to create surface.	Create Surface
2	Direct Show - Will lock/unlock the surface	Fill data structure
3	Decoder - Tell Driver what slot for decode	
4	Decoder - Lock, Tells what surface to display	Display Slot
_		

5 Decoder - Goto 3

6.9.2 Block Diagram

To use the integrated MC core, the MC driver first ensures that the MC subsystem is idle by programming the status registers. The driver writes the MC commands and immediate data into the 3D command/parameter FIFO. The MC subsystem is returned to normal processing mode by issuing an End of Stream MC command. These steps are explained in detail in the following sections. Figure 6-17 shows the MC block diagram of the SM3110.

6.9.3 Motion Compensation Client Commands

Motion Compensation is a "back-end" process which is part of the overall MPEG-2 decoding model. The "front-end" process includes parsing the bitstream and reconstructing IDCT data. The interface between the front-end and the MC back-end will include the command stream. Data can be interleaved in such a way that the command comes first, followed by any IDCT data required by it, followed by the next command, etc.

6.9.3.1 DMCM Commands

DMCM (dwCommand field in the DMCM structure) is a 4CC command code which is set by the client (SoftDVD). It determines which action the DDraw driver will take on Unlock. There are two commands available in this implementation.

//----- COMMANDS ----#define DMCM_CMD_NONE 0
#define DMCM_CMD_DISPLAY 2

The default command is DMCM_CMD_NONE - do nothing. It is used when client locks surface just to check driver's capabilities, version number or current state.

The other command is: DMCM_CMD_DISPLAY - new frame has to be shown.

These commands are sent to the MC core through the Command Decode Unit (CDU) from the 3D command FIFO.

Programmer's Reference

6.9.3.2 DMCM surface allocation

The DMCM DDraw surface is an interface for hardware-assisted MPEG motion compensation using Silicon Magic's SM3110 graphics chips. The DirectShow client (SoftDVD) passes to the DDraw driver motion vectors, coefficient data (the output of IDCT) and control data on a frame by frame basis.

Memory is allocated for the DirectDraw motion compensation surface (DMCM) structure. The definition for this interface structure is given below.

```
//----- DMCM COMMANDS ------
// Commands for DDraw
#ifndef dmcm h
#define dmcm h
#define DMCM_CMD_NONE
                                0
#define DMCM_CMD_DISPLAY
                              2
typedef struct MCSiMagicBeginData_TAG
 BYTE PictureStructure;
 BYTE PictureCodingType;
 BYTE TopFieldFirst;
 int ForwardRefSlot;
  int BackwardRefSlot;
  int DestinationSlot;
} MCSiMagicBeginData;
typedef struct MCSiMagicMacroBlk_TAG
 int hOffset;
                         // upper left macroblock coordinates in pels
  int vOffset;
                         // upper left macroblock coordinates in scanlines
 BYTE DCTType;
                          // Field DCT or Frame DCT
 BYTE codedBlockPattern; // Coded Block Pattern
 BYTE overflowCodedBlockPattern; // Overflow CodedBlock Pattern
 BYTE motionType;
 int PMV[2][2][2]; // contains motion vectors in half pel units
  int motionFieldSelect[2][2]; // Motion
  int macroblockType;
 LPBYTE *lpIDCTData;
 LPBYTE *lpOverflowData;
} MCSiMagicMacroBlk;
```



```
typedef struct
  struct
  {
                  pIDCTData; // pointer to IDCT data buffers
    PBYTE
    PBYTE
                  pYBuffer;
                               // pointer to Y plane for I-frame
    PBYTE
                  pUBuffer;
                               // pointer to U plane for I-frame
    PBYTE
                                    // pointer to V plane for I-frame
                  pVBuffer;
    UTNT
                uPitch;
                         // pitch for Y in frame buffer; half of this for UV
                  uWaitTime;
                               // time to sleep in ms.
    UINT
    LPVOID
                  lpfStartDecodeDriverFunction; // Called at start of decode
    LPVOID
                  lpfEndDecodeDriverFunction; // Called at end of decode
                lpfProcessMBDriverFunction; // Process Macroblock Function
   LPVOID
                  dwIntstanceData; //value to be passed back in parameter of
    DWORD
                                     the *lpfStartNewDecodeDriverFunction
  }
                                    // initialized by DDraw upon surface LOCK
 DriverData;
  struct
  {
               dwCmd;
                                   // DMCM command (display)
    DWORD
   DWORD
              dwTaskType;
                                   // DMCM command (display)
                                   // DMCM command (display)
   DWORD
              dwDisplayTaskType;
          dwDecodeBuffIndex;
   int
   DWORD dwDecodeTaskCount;
    DWORD
               dwDataSize;
                                   // Size of IDCT data to transfer
    DWORD
               dwFrameType;
                                   // Type of Frame (1:I, 2:P, 3:B)
    DWORD
               dwSlotNumber;
                                  // Logic slot number
   DWORD dwDisplayBuffIndex;
    DWORD
               dwBobMode;
                                   // 0:off, 1:Top 1'st, 2:Btm 1'st, 3:Only
                                     Top, 4:Only Btm
  }
 ClientData;
                                  // filled by the client before the surface
                                     UNLOCK
} SURFMCSiMagic, *LPSURFMCSiMagic;
typedef LPSURFMCSiMagic (__stdcall *LPSTARTDECODEFUNC_MG)(MCSiMagicBegin-
                                     Data *);
typedef LPSURFMCSiMagic (__stdcall *LPENDDECODEFUNC_MG)();
typedef LPSURFMCSiMagic (__stdcall *LPPROCESSMBFUNC_MG)(MCSiMagicMacroBlk
                                     *);
#endif
extern LPSURFMCSiMagic __stdcall StartDecodeMotionComp( MCSiMagicBeginData
                                     *);
extern LPSURFMCSiMagic __stdcall EndDecodeMotionComp() ;
```

extern LPSURFMCSiMagic __stdcall ProcessMacroBlock(MCSiMagicMacroBlk *);

6.9.4 Registers

6.9.4.1 Start and End Decode Functions

Two functions are defined in the driver that start and end the MC decode process. The driver passes pointers to these two functions to SoftDVD. The StartDecode function checks the status register to ensure that the 3D/MC subsystem is not busy and then writes the MC command to the command FIFO. SoftDVD passes the size of the data written to the driver during in the EndDecode function using which the driver writes the IDCT data to the command FIFO.

6.9.4.2 CDU Start Motion Compensation Command

The CDU interprets **0xD** (13) as the Motion Compensation command. This command places the CDU into MC mode.

Field	Function
31:28	Command. DH
27:00	Reserved.

6.9.4.3 End of Stream Instruction

In MC mode, the Command Decode Unit interprets 3D command FIFO data as MC core instructions. To leave MC mode, an End of Stream instruction is sent to the command FIFO. This instruction is **20000000H**.

Field	Function
31:00	MC End of Stream. 20000000H

6.9.4.4 Format Conversion Instruction

The MPEG-2 decoded bitstream is converted from the 4:2:0 YCrCb format to the SM3110 supported 4:2:2 format. The Command Decode Unit interprets a command with a leading value of **0xC (12)** in the four msb bits as an MC format conversion command. These commands are not valid between the MC command **0xD (13)** and the End of Stream command **20000000H**.

Field	Function
31:28	Command CH.
27:26	Slot Number (0,1,2,3). Selects which slot should be converted.
25:24	Horizontal Compression Ratio

Value	Semantics
0	1-1 compression (no compression)
1	2-1 compression
2	4-1 compression
3	8-1 compression
23:00	Destination buffer address.

In MC mode, the registers for slot base addresses and plane offsets need to be set by the driver. These are as follows:

Slot Base Addresses:

Offset	Field	Function
+340H	31:00	Slot 0 Base Address
+360H	31:00	Slot 1 Base Address
+380H	31:00	Slot 2 Base Address
+3A0H	31:00	Slot 3 Base Address

Plane 1/ Plane 3 Offsets:

Offset	Field	Function
+344H	31:00	Slot 0 Plane 1/Plane 3 Offset
+364H	31:00	Slot 1 Plane 1/Plane 3 Offset
+384H	31:00	Slot 2 Plane 1/Plane 3 Offset
+3A4H	31:00	Slot 3 Plane 1/Plane 3 Offset

Plane 2 Offsets:

Offset	Field	Function
+348H	31:00	Slot 0 Plane 2 Offset
+368H	31:00	Slot 1 Plane 2 Offset
+388H	31:00	Slot 2 Plane 2 Offset
+3A8H	31:00	Slot 3 Plane 2 Offset

6.9.5 Display Memory Requirements

6.9.5.1 Frame and Format Buffers

MPEG-2 uses a 4:2:0 video format which implies that for each video frame, the number of samples of each chrominance component (Cr and Cb) is one-half of the number of samples of luminance (Y), both horizontally and vertically.

With the 4:2:0 format, each pixel will take an average of 12 bits (eight bits for the luma and four for the chroma) which translates to each pixel requiring 1.5 bytes of storage. This tells us that one frame or picture in NTSC format which is 720 x 480 will require 518,400 bytes of memory while one frame in PAL format which is 720 x 576 will require 622,080 bytes of memory. The motion compensation core requires that 3 buffers of equal size need to be available to store the I, P and B frames that will be shown.

Table 6-8. Memory required for the three frame buffers

NTSC:	720 x 480 x 1.5 = 518,400 bytes x 3 = 1,555,200 bytes
PAL:	720 x 576 x 1.5 = 622,080 bytes x 3 = 1,866,240 bytes

The MPEG-2 decoded bitstream is in the 4:2:0 YCrCb pixel format as mentioned earlier. SM3110 can directly display 4:2:2 YCrCb progressive video. This requires a conversion to the 4:2:2 video format. Two format conversion buffers are allocated for this purpose. The memory requirements are shown below.

Table 6-9. Memory required for the two format conversion buffers

NTSC:	720 x 480 x 2 = 691,200 bytes x 2 = 1,382,400 bytes
PAL:	720 x 576 x 2 = 829,440 bytes x 2 = 1,658,880 bytes

The total memory requirement for NTSC is 1,555,200 bytes + 1,382,400 bytes = 2,937,600 bytes and the total memory required for PAL is 1,866,240 bytes + 1,658,880 bytes = 3,525,120 bytes.

6.9.5.2 Screen Resolutions Supported

Based on the above memory requirements for frame buffers and format conversion buffers, the following screen resolutions are supported.

Format	Total Memory Available (bytes)	Required for Motion Comp. (bytes)	Memory Available for Display (bytes)	Supported Display Resolution
NTSC	4,194,304	2,937,600	1,256,704	800x600@16bpp (=960,000 bytes) 1024x768@8bpp (=786,432 bytes)
PAL	4,194,304	3,525,120	669,184	800x600@8bpp (=480,000 bytes)

Table 6-10. Screen Resolutions Supported

6.9.5.3 System Memory Requirements

Table 6-11 lists the system memory requirement for the DirectDraw surface command buffer. This is the buffer that is used to store the commands and data that are sent to the video card driver (HAL) from SoftDVD

ID	Туре	Formula	NTSC	PAL
Α	Macro Blocks	(pixels)/(16*16)	1,350	1,620
В	# Blocks	6 * A	8,100	9,720
С	Commands	12 * B	97,200	116,640
D	Data	64 * B	518,400	622,080
E	Data with 8 or 16 bit Error	2 * D	1,036,800	1,244,160
	Total Buffer Size	C + E	1,134,000	1,360,600

6.10 Power Management

6.10.1 Overview

The Power Management Function supports Microsoft's OnNow specification and the VESA BIOS Extensions/Power Management (VBE/PM) Standard. The Power Management Function receives commands (function calls) from the Operating System to place the display controller and display monitor(s) into one of several power saving/consuming states. The Power Management Function does not establish any power usage policy; it only supports the policy defined by the operating system.

Power management supports four states: On, Standby, Suspend and Off. These states represent four successive levels of power consumption. The operating system selects the appropriate state based upon user parameters, available system power and keyboard/mouse events.

6.10.2 OnNow Power Management

For Power Management in a Windows operating system environment, Microsoft has specified how power management can be supported "OnNow Power Management and Display Device Class Drivers". This specification describes which functions are expected from a miniVDD.

6.10.3 VESA BIOS Power Management

For BIOS Power Management, the VBE/PM Standard specifies how power management is supported. This standard specifies a set of functions (actually sub-functions) which are invoked by application software (using interrupt 10H) to utilize power saving features of display hardware.

6.10.4 Other Power Management

Other than VESA and OnNow power management, software can perform dynamic power management according to the hardware usage. SM3110 is designed in a way that each individual block can be shut off independently. The remaining issue will be when and what to shut off or turn on at any particular time. Generally speaking, under a normal simultaneous view state, display 1 and scaler 1 can all be turned off, while display 0 should be always on.

6.10.5 Registers for OnNow and VESA DPMS

What follows are details to support power management either in BIOS or a miniVDD using the SM3120. Support for each power consuming/saving state is described as if the state is entered without any dependence upon the previous state.

Note that DCLK register must be the last register to be changed else it can hang the machine. When the device is turned back to a full power state, DCLK must be the first register to be set back and some delay must be added (\sim 100 ms).D0 – On

Register	bit(s)	Description
+00D4H	06:00	Enable MCLK by setting all bits to 0.
+00D8H	03:00	Enable DCLK by setting all bits to 0.
+0DF7H	01:00	Enable Horizontal Sync by setting field to 0.
+1DF7H		
+0DF7H	03:02	Enable Vertical Sync by setting field to 0.
+1DF7H		
+0D30H	07:00	Restore video output by setting field to a nonzero number based on dis-
+1D30H		play format and stride information.
+0DF7H	07	Power up DAC by setting bit to 0.
+1DF7H		

6.10.5.1 D1 – Standby

Register	bit(s)	Description
+00D4H	06:00	Enable MCLK by setting all bits to 0.
+0DF7H	01:00	Disable Horizontal Sync by setting field to the value 1 or 2. This
+1DF7H		depends upon what the display panel expects as a pulse (a voltage increase pulse or a voltage drop pulse). 0 implies voltage is always low, 1 implies voltage is always high.
+0DF7H	03:02	Enable Vertical Sync by setting field to 0.
+1DF7H		
+0DF7H	07	Power down DAC by setting bit field to 1.
+1DF7H		
+0D30H	07:00	Make Video go "Blanked" by setting field to 0.
+1D30H		
+00D8H	03:00	Disable DCLK by setting all bits to 1.

6.10.5.2 D2 – Suspend

Register	bit(s)	Description
+00D4H	06:00	Enable MCLK by setting all bits to 0.
+0DF7H	01:00	Enable Horizontal Sync by setting field to 0.
+1DF7H		
+0DF7H	03:02	Disable Vertical Sync by setting field to 1 or 2. Depends upon what dis-
+1DF7H		play panel expects as a pulse (a voltage increase pulse or a voltage drop pulse). 0 implies voltage is always low, 1 implies voltage is always high.
+0DF7H	07	Power down DAC by setting bit field to 1.
+1DF7H		
+0D30H	07:00	Make Video go "Blanked" by setting field to 0.
+1D30H		
+00D8H	03:00	Disable DCLK by setting all bits to 1.

6.10.5.3 D3 – Off

Register	bit(s)	Description
+0DF7H	01:00	Disable Horizontal Sync by setting field to the value 1 or 2. This
		depends upon what the display panel expects as a pulse (a voltage
+1DF7H		increase pulse or a voltage drop pulse). 0 implies voltage is always low,
		1 implies voltage is always high.
+0DF7H	03:02	Disable Vertical Sync by setting field to 1 or 2. Depends upon what dis-
+1DF7H		play panel expects as a pulse (a voltage increase pulse or a voltage
		drop pulse). 0 implies voltage is always low, 1 implies voltage is always
		high.
+0DF7H	07	Power down DAC by setting bit field to 1.
+1DF7H		
+0D30H	07:00	Make Video go "Blanked" by setting field to 0.
+1D30H		
+00D4H	06:00	Disable MCLK by setting all bits to 1.
+00D8H	03:00	Disable DCLK by setting all bits to 1.

6.10.6 Registers for Dynamic Power Management

The registers to control individual blocks are 0xD4 and 0xD8. The following table is a breakdown of their definition.

Block	Registers	Description	
Display 0	+00D8H bit 0	Should be always on	
Display 1	+00D8H bit 1,	Shut off when using simultaneous view	
	+00D4H bit 3		
Scaler 0	+00D8H bit 3,	Turn on during CreateSurface() in DirectDraw Turn off dur-	
	+00D4H bit 1	ing DestroySurface() in DirectDraw	
Scaler 1	+00D8H bit 2,	When dual view is enabled, same condition as Scaler 0	
	+00D4H bit 2		
2D Engine	+00D4H bit 5	Turn on during 2D driver enable	
		Turn off during 2D driver disable	
3D Engine	+00D4H bit 6	Turn on during context creation in Direct3D	
		Turn off during context destroy in Direct3D	
MIU	+00D4H bit 0	Should be always on	

6.11 Video Capture

6.11.1 Overview

The SM3110 controller supports YUV4:2:2 and CCIR 656 video input and interrupt mechanisms for video capture. A I^2C video decoder must be used to convert the incoming NTSC/PAL/SECAM video signal to digital streams. A configurable input/output data port is provided to access up to 8 bits of data that can be used for I^2C device control.

6.11.2 I²C device interface

Pins 2 and 3 of the configurable data port are reserved to control the video decoder I^2C device. Pin 2 is for clock (SCL) and pin 3 is for data (SDA).

Sample code: Control CIO port (configurable input/output data port)

```
SCL BIT
           equ
                  4
                                        ; bit 2 for Clock
SDA_BIT
           equ
                  8
                                        ;bit 3 for Data
InitCIOport
                  proc
                         near
           fs,CmdPortSelector
    mov
                                        ;mapio selector
                                        ;bit 3:2=00 to enable the mask
           al,0F3h
    mov
           fs:[412h],al
                                        ;CIO control mask
    mov
           holding_register,OFFh
                                       ;pull high init.
    mov
    ret
InitCIOport
                  endp
WriteBit
           macro bMask, fHighLow ; set clock/data pin to Low(0) or High(non-0)
           al,fHighLow
    mov
                                        ;entry:0,
    neq
           al
                                                     non-0
    sbb
           al,al
                                        ;
                                               Ο,
                                                     FF
    and
           al,bMask
                                        ;
                                              Ο,
                                                     SCL_BIT/SDA_BIT
    and
           holding_register, NOT bMask
           holding_register, al
    or
           al, holding_register
    mov
           byte ptr fs:[411h],al
                                       ;CIO output
    mov
    endm
ReadBit macro bMask
                                        ;read clock or data pin disable mask
                                       ;CIO control mask
    mov
           ah,fs:[412h]
           ah,bMask
                                        ;set 1 to disable
    or
           fs:[412h],ah
                                       ;CIO control mask
    mov
;Read in holding_register
           al,fs:[410h]
                                       ;CIO input port
    mov
           holding_register,al
    mov
;enable mask
    and
           ah,NOT bMask
                                        ;set 0 to enable
```


mov fs:[412h],ah ;return in al=0 or non-0		;CIO control mask				
	al, bMask	;data in mask bit				
endm						
Delay mac: push	ro cx					
mov	cx, delay_time	;delay time adjust to fit I2C device duration spec				
delay_loop:						
loop	delay_loop					
pop endm	СХ					

With macros for reading and writing individual bits to the I^2C device, this is an example of how to write one full byte of data to the I^2C device.

```
SendByteToI2cDevice proc near ;entry: bData
   mov
          bl,bData
          cx,8
                              ;8 bits
   mov
    WriteBit
               SCL_BIT,0
                              ;write clock pin to low
sbi2c_loop:
    shl
          bl,1
    sbb
          bh,bh
    WriteBit
              SDA_BIT,bh
                              ;write data pin
    WriteBit
                 SCL_BIT,1
                              ;write clock pin to high
    Delay
   WriteBit
                 SCL_BIT,0
                              ;write clock pin to low to create clock pulse
    Delay
    loop
          sbi2c_loop
                              ;loop 8 times for a BYTE
    Delay
   WriteBit
                 SDA_BIT,1
                             ;write data pin with HIGH to check for ACK
    Delay
    Delay
    Delay
                              ;write clock pin to HIGH for a clock pulse
    WriteBit
                 SCL_BIT,1
    Delav
    ReadBit
                 SDA BIT
                              ;read bit in AL to see if it is pulled low by
                                     I2C device
    Delay
    push
          ax
                              ;save
    WriteBit
                 SCL BIT,0
                              ;write clock pin to LOW for a clock pulse
    Delay
    pop
          ax
                              ;restore
    ret
                              ;return in AL with 0 (ACK) or non-0 (no ACK)
```


SendByteToI2cDevice endp ReadByteFromI2cDevice proc near cx,8 ;8 bits mov WriteBit SCL_BIT,0 ;write clock pin to low rbi2c_loop: WriteBit SCL_BIT,1 ;write clock pin to high Delay ReadBit SDA_BIT ;write data pin in AL=0 or non-0 neg al adc bl,bl ; carry bit shift to BL SCL_BIT,0 WriteBit ;write clock pin to low to create a clock pulse Delay loop rbi2c_loop ;loop 8 times for a BYTE Delay WriteBit SDA_BIT,0 ;write data pin to send ACK Delay WriteBit SCL_BIT,1 ;write clock pin to HIGH for a clock pulse Delay WriteBit SCL_BIT,0 ;write clock pin to LOW for a clock pulse Delay WriteBit SDA_BIT,1 ;write data pin device Delay ; return read BYTE data in AL mov ax,bx ret ReadByteFromI2cDevice endp

6.11.3 Video port control

As with other graphics data, the SM3110 surface mechanism is used to associate the video input with a buffer. The scaler channels are used to associate the surface to a display. This section provides examples to perform common control operations. These are explained as specific examples for clarity, but could be combined in real applications.

To prepare for video capture function, following steps are required at the initialization period.

- 1. Define scaler and video capture surfaces.
- 2. Channel controls assign surface
- 3. Set Overlay priority.
- 4. Set ColorKey

Sample code: Prepare for video capture

```
PrepareVideoCapture
                           proc
                                  near
   ;;Define a surfaces for video data input
             ax, VIDCAP_SURFACEINDEX
                                         ;surface descriptor used for video cap-
      mov
                                         ture
             surfacenum, ax
      mov
             eax, VIDCAP WIDTH
      mov
             surfacestride, eax
      mov
      mov
             edx, VIDCAP HEIGHT
             edx
      mul
      mov
             edx,dwPrivatePhyAddr
                                         ;total mem-reserved buffer
      sub
             edx,eax
                                         ;assign surface location at the end of
                                         memory
             surfacebase,edx
      mov
      Call
             DefineSurface
                                         ;define the suface to accept video data
             fs,CmdPortSelector
                                         ;mapio selector
      mov
             ax, VIDCAP_HEIGHT
      mov
             fs:[VideoPortMaxHeight],ax
                                                ;set video input height here
      mov
   ;;assign the defined for scaler and video capture channel
             eax, surfacenum
      mov
             fs:[ChScaler0SIndex],eax
                                         ;assign to scaler channel
      mov
             fs:[ChVidCapSIndex],eax
                                         ;assign to video capture channel
      mov
             eax,eax
      xor
             fs:[ChScaler00ffsets],eax ;scaler channel default start at (0,0)
      mov
             fs:[ChVidCapOffsets],eax
                                         ;video capture channel always start at
      mov
                                         (0, 0)
   ;;set color key
      mov
             eax, color-key
      mov
             fs:[Dsp0ColCmp],eax
                                         ;set dest. Color-key color
             eax,200h
                                         ;bit 9 for dest.color-key
      mov
             fs:[Dsp0MixCtl],eax
                                         ;enable dest. Color-key
      mov
   ;;set overlay control
                                         ;BG:scaler channel, FG:display channel
             eax,10h
      mov
      mov
             fs:[OverlayOPriority],eax ;enable Color-key overlay
      ret
  PrepareVideoCapture
                           endp
```

Programmer's Reference

The method used to shrink or stretch video data from a scaler channel to a display channel was described in display controls, Section 6.5.1: 2D Functions, Display Operations.

To enable or disable video, both the video input port and the scaler channel need to be programmed.

Sample code: Enable or Disable Video

```
EnableVideo proc near
;;enable video input port
          fs,CmdPortSelector
                                      ;mapio selector
    mov
          al, prescale
                                      ;prescale factor, 0,1,2,3 to shrink
    mov
                                      video input by factor 1, 1/2, 1/4 and 1/8
          al,4
                                      ;move to bit 4 and 5
    shl
                                      ; bit 0 to enable/disable
          al,1
    or
                                      ;set video input height here
          fs:[VideoPortConfig],al
    mov
;;enable video to display
          eax,58h
    mov
          fs:[ChScaler0Format],eax ;set format to YUY2 to enable
    mov
    ret
EnableVideo endp
DisableVideo proc near
;;disable video input
    mov
          fs,CmdPortSelector
                                      ;mapio selector
    mov
          al, prescale
                                      ;prescale factor, 0,1,2,3 to shrink
                                      video input by factor 1,1/2,1/4 and 1/8
    shl
         al,4
                                      ;move to bit 4 and 5
    mov
          fs:[VideoPortConfig],al
                                      ;set video input height here
;;disable video to display
    xor
          eax,eax
          fs:[ChScaler0Format],eax ;0 to disable
    mov
    ret
DisableVideo endp
```


6.11.4 Interrupt for video capture

An interrupt line serves as the hardware interrupt scheme for video capture. The following functions show how to enable, disable and clear the interrupt line.

Sample code: Control interrupt line

```
EnableInterrupt proc near
        fs,CmdPortSelector
                                     ;mapio selector
    mov
          al,020h
                                      ; bit 5 for Video capture interrupt
    mov
          fs:[ InterruptMask],al
                                      ; 0F1h
    or
          al,02h
                                      ; bit 1 for External Video Input
    mov
          fs:[DispIntFlaq],al
                                      ; ODFOh
    or
    ret
EnableInterrupt endp
DisableInterrupt proc near
    mov
          fs,CmdPortSelector
                                     ;mapio selector
    mov
          al,0fch
                                      ; bit 1 for External Video Input, bit
                                     0:reset flag bit
          fs:[DispIntFlag],al
                                      ; 0DF0h
    and
          al,0dfh
                                      ; bit 5 for Video capture interrupt
    mov
          fs:[ InterruptMask],al
                                      ; 0F1h
    and
    ret
DisableInterrupt endp
ClearInterrupt proc near
          fs,CmdPortSelector
                                     ;mapio selector
    mov
          al,02h
                                      ; bit 1 for External Video Input
    mov
          fs:[DispIntFlag],al
                                      ; 0DF0h
    or
    ret
ClearInterrupt endp
```


6.12 **TV Out**

See Chapter 7, Application Notes in the TV encoder section for details.

6.13 Diagnostics

The SM3110 contains some features useful for diagnostic purposes. The primary one of these is the diagnostic port, which allows predefined signals from different subsystems in the chip to be brought out to 8 output pins. To do this, software must set the appropriate 3-bit code in the diagnostic port register for the desired subsystem (other subsystems must be set to 0 to act as a pass-through).

In addition, a performance counter capability allows counting of any of the 8 diagnostic port bits selected by setting the appropriate counter source and enabling the performance counter in register 0x03E of the Command Decode Unit. The resultant performance count appears in register 0x010.

Also, some of the SM3110 internal SRAM values for the Triangle Setup Unit and Command Decode Unit are visible via registers 0x5C0-0x5FC, 0x600-0x7FC and 0x800-0xBFC.

6.14 Software Definitions

This section provides software definitions that are useful in understanding and programming the functions of the SM3110.

6.14. ⁻	1 Equates			
VEN	IDORID	equ	8888H	
DEV	VICEID	equ	4831H	
Men	nory/Register Map	-		
		reas, d	command por	ts, image ports, cursor area and
	-		-	erred register write buffer
PER	IPHERAL CTL BASE	equ	01FE0000H	
REG	SISTER_BASE_OFFSET	equ	01FF0000H	
IMA	GE_BASE_OFFSET	equ	01FFC000H	
_				
	PrivateMemSelector eq			
	VATEAREA_SIZE	equ	20000н	;we reserve 128K for all fifos
)3DFIFO_SIZE	equ	10000H	;64K 3d cmd fifo
	DFIFO_SIZE	equ equ	4000H	;16K 2d cmd fifo
	IMGFIFO_SIZE		8000H	;32K image fifo
	CURDEFERREDBUFFER_SIZE		400H	;1K cursor defer fifo
	DSPDEFERREDBUFFER_SIZE		400H	;1K display defer fifo
CUR	CURSORBUFFER_SIZE		0800H	;2K cursor image buffer
	NBUFFER_SIZE	equ	0800H	;2K icon image buffer
ECM	IDFIFOSIZE	equ	2	;encoded size - 16K
EIM	IGFIFOSIZE	equ	3	;encoded size - 32K
CME	3DFIFO_OFFSET	equ	0	
IMG	FIFO_OFFSET	equ	CMD3DFIFO	_OFFSET+CMD3DFIFO_SIZE
CME	FIFO_OFFSET	equ	IMGFIFO_0	FFSET+IMGFIFO_SIZE
CUR	DEFERRED_OFFSET	equ	CMDFIFO_0	FFSET+CMDFIFO_SIZE
DSF	DEFERRED_OFFSET	equ	CURDEFERR	ED_OFFSET+CURDEFERREDBUFFER_SIZE
CUR	SOR_OFFSET	equ	DSPDEFERRED_OFFSET+DSPDEFERREDBUFFER_SIZE	
ICC	N_OFFSET	equ	CURSOR_OF	FSET+CURSORBUFFER_SIZE
	andaning Trains Cant			
	endering Engine Cont derEngineStatus	equ	oo8F0h	;rendering engine status
	nderEngineControl	-	008F0H 008F1h	;rendering engine control
	itus2D	equ		;2D engine status
	SY2D	equ	08F0H 010B	5
		equ		;2D engine is busy executing
RUN	INING2D	equ	001B	;2D engine is running (not stopped)
Con	itrol2D	equ	08F1H	;2D engine control register
RES	RESET2D		010000000	B ;Reset 2D engine
SIN	SINGLESTEP2D		00000010	1
STA	START2D		00000001	B ;Starts 2D engine
STC)P2D	equ	000000000	B ;Stops 2D

; Interrupts			
InterruptStatus	0011	000F0H	;Interrupt status
-	equ	000F1H	;Global interrupt mask
InterruptMask	equ		_
I_DISPLAY	equ	10000000B	;Display 0 Interrupt
I_DISPLAY1	equ	01000000B	;Display 1 interrupt
I_VideoCapture	equ	00100000B	;Video Capture interrupt
I_PeripheralIO	equ	00010000B	Peripheral IO interrupt
I_HostDMA	equ	00000100B	;Host DMA interrupt
; Power Management		0.0.0	
OutPutEnablePM	equ	000E0H	;Pwr Mgmnt. Output enable
EXTMEMBUS	equ	10000000B	;Ext. Mem Bus
VAFCPORT	equ	01000000B	;VAFC port
PERIPHIO	equ	00100000B	;Peripheral IO port
; Surface Descriptor	Reaigt	Arg	
NEXTSURFACE	equ	010H	;multiplier to index into next
NEXISONFACE	equ		ce registers
SurfaceBaseAddress	equ	00A00H	;Surfaces base address
SurfaceStrideFormat	-	00A04H	;Surfaces stride format base
S0BaseAddress	equ	00A04H 00A00H	Surface 0 Base address
SOStrideFormat	equ	00A00H 00A04H	;Surface 0 Stride and format
SlBaseAddress	equ	00A04H 00A10H	Surface 1 Base address
SIBASEAddress SIStrideFormat	equ	00A10H 00A14H	Surface 1 Stride and format
	equ		
S2BaseAddress S2StrideFormat	equ	00A20H	;Surface 2 Base address ;Surface 2 Stride and format
	equ	00A24H	
S3BaseAddress	equ	00A30H	;Surface 3 Base address ;Surface 3 Stride and format
S3StrideFormat S4BaseAddress	equ	00A34H	Surface 4 Base address
	equ	00A40H	
S4StrideFormat	equ	00A44H	;Surface 4 Stride and format
S5BaseAddress	equ	00A50H	;Surface 5 Base address
S5StrideFormat	equ	00A54H	;Surface 5 Stride and format
S6BaseAddress	equ	00A60H	;Surface 6 Base address
S6StrideFormat	equ	00A64H	;Surface 6 Stride and format
S7BaseAddress	equ	00A70H	;Surface 7 Base address
S7StrideFormat	equ	00A74H	;Surface 7 Stride and format
S8BaseAddress	equ	H08A00	;Surface 8 Base address
S8StrideFormat	equ	00A84H	;Surface 8 Stride and format
S9BaseAddress	equ	00A90H	;Surface 9 Base address
S9StrideFormat	equ	00A94H	;Surface 9 Stride and format
SABaseAddress	equ	00AA0H	;Surface A Base address
SAStrideFormat	equ	00AA4H	;Surface A Stride and format
SBBaseAddress	equ	00AB0H	;Surface B Base address
SBStrideFormat	equ	00AB4H	;Surface B Stride and format
SCBaseAddress	equ	00AC0H	;Surface C Base address
SCStrideFormat	equ	00AC4H	;Surface C Stride and format
SDBaseAddress	equ	00AD0H	;Surface D Base address
SDStrideFormat	equ	00AD4H	;Surface D Stride and format
SEBaseAddress	equ	00AE0H	;Surface E Base address
SEStrideFormat	equ	00AE4H	;Surface E Stride and format
SFBaseAddress	equ	00AF0H	;Surface F Base address

SFStrideFormat		equ 00AF4H	;Surface F Stride and format
CURSOR0SURFACEI	NDEX	equ 0	
CURSOR1SURFACEI	NDEX	equ 1	
SCALER0SURFACEINDEX		equ 2	
SCALER1SURFACEINDEX		equ 3	
DISPLAYSURFACEI	NDEX	equ 4	
FIRSTSURFACEIND	EX	equ 5	
LASTSURFACEINDE	Х	equ OEh	
DISPLAY1SURFACE	INDEX	equ OEh	
ICONSURFACEINDE	Х	equ OFh	
CURSOR0SURFACE	equ	SurfaceBaseAddress	+ (CURSOR0SURFACEINDEX* NEXTSURFACE)
CURSOR1SURFACE	equ	SurfaceBaseAddress	<pre>s +(CURSOR1SURFACEINDEX* NEXTSURFACE)</pre>
SCALER0SURFACE	equ	SurfaceBaseAddress	<pre>s +(SCALER0SURFACEINDEX* NEXTSURFACE)</pre>
SCALER1SURFACE	equ	SurfaceBaseAddress	<pre>s +(SCALER1SURFACEINDEX* NEXTSURFACE)</pre>
DISPLAYSURFACE	equ	SurfaceBaseAddress	<pre>s +(DISPLAYSURFACEINDEX* NEXTSURFACE)</pre>
FIRSTSURFACE	equ		<pre>s +(FIRSTSURFACEINDEX* NEXTSURFACE)</pre>
LASTSURFACE	equ		<pre>s +(LASTSURFACEINDEX* NEXTSURFACE)</pre>
DISPLAY1SURFACE	equ		<pre>s +(DISPLAY1SURFACEINDEX* NEXTSURFACE)</pre>
ICONSURFACE	equ	SurfaceBaseAddress	<pre>s +(ICONSURFACEINDEX* NEXTSURFACE)</pre>
1		1	
BPP1	equ		
BPP4 BPP8	equ		
BPP16	equ		
BPP15	equ equ		
BPP24	equ		
21121	oqu	Ū	
CHANNELCUR	equ	0	
CHANNELICON	equ	1	
CHANNEL0	equ	2	
CHANNEL1	equ	3	
CHANNEL2	equ	4	
; Display Char	nel j	parameters	
ChannelOffsets	equ	00B00H	;Offsets register base
ChannelIndex	equ	00B04H	;Index register base
ChCurOffsets	equ	00B00H	;Cursor Channel display X,Y offsets
ChCurSIndex	equ	00B04H	;Cursor Channel attached surface index
ChIconOffsets	equ	00B10H	;Control Channel display X,Y offsets
ChIconSIndex	equ	00B14H	;Control Channel attached surface
			index
Ch0Offsets	equ		Channel 0 display X,Y offsets
ChOSIndex	equ		Channel 0 attached surface index
ChlOffsets	equ		Channel 1 display X,Y offsets
Ch1SIndex	equ		Channel 1 attached surface index
Ch2Offsets	equ		Channel 2 display X,Y offsets
Ch2SIndex	equ	00B44H	;Channel 3 attached surface index

ChOUOffsets	equ	00BB	ОН	;Channel 0 U offsets				
Ch0VOffsets equ		00BC	OH	;Channel 0 V offsets				
ChAudSIndex equ		00BA4H		;Audio Channel Playback Surface Index				
ChVidCapSIndex equ		00BE	4H	;Video Capture Channel Surface Index				
		- ·						
; Buffer Descr	-	-						
CMDBufferBaseAdd		equ	00C00H	Command Buffer Base/Size				
CMDBufferWritePt		equ	00C04H	Command buffer Write pointer				
CMDBufferReadPtr		equ	00C08H	;Command buffer Read pointer				
IMGBufferBaseAdd		equ	00C10H	;Image data Buffer Base/Size				
IMGBufferWritePt		equ	00C14H	;Image buffer Write pointer				
IMGBufferReadPtr		equ	00C18H	;Image buffer Read pointer				
CmdFIFOStatus		equ	00C0CH	Command Parameter FIFO status				
ImgDataFIFOStatu	IS	equ	00C1CH	;Image Data FIFO status				
FIFOMASK		equ	OFH	;				
FIFOFULL		equ	0	;Fifo full				
FIFO1_8TH		equ	1	;Fifo 1/8 empty				
FIFO1_4TH		equ	2	;Fifo 1/4 empty				
FIFO3_8TH		equ	3	;Fifo 3/8 empty				
FIFO1_2TH		equ	4	;Fifo 1/2 empty				
FIFO5_8TH		equ 5		;Fifo 5/8 empty				
FIFO3_4TH		equ 6		;Fifo 3/4 empty				
FIFO7_8TH		equ 7		;Fifo 7/8 empty				
FIFOEMPTY		equ	8	;Fifo empty				
CursorRecordPtr		equ	00C24H	;Cursor Record pointer - Write pointer				
CursorReplayPtr		equ	00C28H	;Cursor Replay pointer - Read pointer				
DisplayRecordPtr		equ	00С34Н	;Display Record pointer - Write pointer				
			00000	-				
DisplayReplayPtr		equ	00C38H	;Display Replay pointer - Read				
				pointer				
DMALocalMemAddPt	r	equ	00C44H	;Host DMA Local Memory Address				
				Pointer				
CursorReplayStsR	-	equ	00CF0H	;Cursor Replay status				
DisplayReplaySts	Reg	equ	00CF4H	;Display Replay status				
REPLAYPENDING		equ	01000000B					
REPLAYACTIVE		equ	01B	;Deferred register update is active				
CursorReplayCtlR	-	equ	00CF0H	;Cursor Replay control(R/W)				
DisplayReplayCtl	Reg	equ		;Display Replay control(R/W)				
ENABLEREPLAY		equ	0000001B	;Enable replay of deferred regis-				
	-			ter writes				
; Display Cont		0.0	o					
ChannelFormat	equ	00D0		Channel format				
CursorFormat equ		00D0	UH	Cursor Channel Format				
CURSOROFF equ		0		;				
CURSOR1	equ		0000B	;enable mono cursor				
CURSOR16	equ		0000B	;enable color cursor				
IconChFormat	equ	00D1		;Icon Control Channel Format				
ChOFormat	equ	00D2		Scaler channel(0) format				
Ch0YRControls	equ	00D2	4H	;Scaler channel(0) controls YR				

ChOUVGBControls	equ	00D28H		;Scaler channel(0) controls UV/GB
INC_FRAC_BIT	equ	11		;Fractional component, LS bits
Ch0Controls	equ	00D2CH		;Scaler channel(0), Increment
	-			values
XNEAREST	equ	00000н		;X - Nearest neighbor
XBILINEAR	equ	08000H		;X - Bilinear
YNEAREST	equ	00000н		;Y - Nearest neighbor
YBILINEAR	equ	080000000н		;Y - Bilinear
ChlFormat	equ	00D30H		;Channel 1 format
Ch2Format	equ	00D40H		;Channel 2 format
CLUT4	equ	(BPP4 shl 4)	+1	;4 BPP color lookup
CLUT8	equ	(BPP8 shl 4)		;8 BPP color lookup
RGB555	equ	(BPP16 shl 4)		70 BFF COTOF FOORAD
RGB565	-	(BPP16 shl 4)	. 1	7RGB 5-6-5
	equ			
RGB888	equ	(BPP24 shl 4)		;RGB 8-8-8
YUV420	equ	(BPP8 shl 4)		;8 Bit YUV 4-2-0 Planar MPEG
YUV9	equ	(BPP8 shl 4)		;8 Bit YUV 9 - Indeo
YUV422	equ	(BPP16 shl 4)		;16 Bit YUV 4-2-2
YVU422	equ	(BPP16 shl 4)	+9	;16 Bit YVU 4-2-2
OverlayPriority	equ	00D80H		;Overlay priority control
ChOChromaCmp	equ	00D84H		;Channel 0, chroma comparator
Dsp0ColCmp	equ	00D88H		;Display0 color comparator
Dsp1ColCmp	-	01D88H		;Display1 color comparator
	equ	00D90H		Mix control between Display0
Dsp0MixCtl	equ			;Mix control between Display0 ;Mix control between Display1
Dsp1MixCt1	equ	01D90H	0005	
ENABLECTL	equ	000 <u>1</u> 000000000		;Enable control surface
DISABLECTL	equ	000 <u>0</u> 000000000		;Enable control surface
ENABLECOLKEY	equ	0000 <u>1</u> 00000000		;Enable color keying
DISABLECOLKEY	equ	0000 <u>0</u> 00000000		;Enable color keying
KEYINVERT	equ	00000 <u>1</u> 0000000	0008	;Key sense inverted selects Dest.(Back) channel
KEYNORMAL	equ	00000000000000	000B	;Key sense normal selects
				Src.(Fore) channel
KEYSRCBACK	equ	000000 <u>1</u> 000000	000B	;Key source Dest. (Back) channel
KEYSRCFORE	equ	000000 <u>0</u> 000000	000B	;Key source . (Fore) channel
BLENDENABLE	equ	0000000 <u>1</u> 00000	000B	;Enable blending
BLENDDISABLE	equ	000000 <u>0</u> 00000	000B	;Disable blending
AudioChFormat		000000	• • • • • • • •	Discharly sharped from t
	equ	00DE0H		Playback channel format
AUDIOPLAY	equ	0 <u>0</u> 00000B	;Audio	-
AUDIOMUTE	equ	0 <u>1</u> 00000B	;Audio	
AUDIOPLAYENA	equ	00 <u>1</u> 0000B		enabled at next display HSYNC
AUDIOPLAYDISA	equ	00 <u>0</u> 0000B		disabled at next display HSYNC
AUDIOBSIZE256	equ	00000 <u>0</u> в		buffer size 256 bytes
AUDIOBSIZE512	equ	000000 <u>1</u> B		buffer size 256 bytes
AudioChClkContro	lsequ	00DE4H	;Seria	l Audio port clock controls
DispIntFlag	equ	00DF0H	;Displ;	ay Interrupt Flag
DISPVBLANKINT	equ	001B		ay Vblank Interrupt occured
EXTVIDEOSYNCINT	equ	010B	_	nal Video Sync interrupt occured
	cyu	0100	, DALLI	and video byne incertape occured

DispIntEnable	equ	00DH	FlH	;MAXH only, SM3110 merged to F1H				
DisplayStatus	equ	00DH	F2H	;				
ModeCtlReg	equ	00DH	74H	;Mode control Register				
TIMEVGACRTC	equ	0000	00 <u>00</u> 0B	;Timing - VGA CRTC				
TIMEENHCRTC	equ	0000	00 <u>10</u> 0B	;Timing - Enh. CRTC				
TIMEENHVGA	equ	0000)1 <u>00</u> 0в	;Timing - Enh. CRTC genlock VGA CRTC				
TIMEENHEXT	equ	0000)1 <u>10</u> 0в	;Timing - Enh. CRTC genlock with Exter-				
				nal Sync				
DISPENAVGA	equ	0000	000 <u>00</u> B	;Display Output - Enable VGA				
DISPENAENH	equ	0000	000 <u>01</u> B	;Display Output - Enable Enhanced				
DISPVGAENH	equ		000 <u>10</u> B	;Display Output - VGA and Enh				
DISPDISABLED	equ	0000	000 <u>11</u> B	;Display Output - disabled				
SpDisplayControl	equ	00DH	75Н	;Special Display Control				
EnhSyncPolarityRe	egequ	00DH	F6H	;Enh Sync Polarity Register				
HSYNCPOS	equ	001	3					
VSYNCPOS	equ	0101	3					
SyncLevelReg	equ	00DH	F7H	;Sync levels for power management				
SYNCSNORMAL	equ	0						
HSYNCSET0	equ	0000		;Force Hsync to 0				
HSYNCSET1	equ	0001	LOB	;Force Hsync to 1				
VSYNCSET0	equ	0010		;Force Vsync to 0				
VSYNCSET1	equ	0100		;Force Vsync to 1				
ScalerFifoSize	equ	00DF8H		;Display Scaler FIFO Size				
ScalerFifoThresh	oldequ			;Display Scaler FIFO Threshold				
PaletteRWState	equ	00DH	FCH	;Palette Read/Write status				
;								
; Display Timing								
ChViewPositionSta		equ	00E00H	Channel View position starts				
ChViewPositionEnd		equ	00E04H	Channel View position ends				
CursorPositionSta	arts	equ 00E00H		;Cursor Channel Viewport posi-				
a		0.000.411		tion top left ;Cursor Channel Viewport extents				
CursorPositionEnd	as	equ 00E04H						
IconChPositionSta		0.001.01		bot. right				
ICONCHPOSILIONSL	arts	equ 00E10H		;Icon Control Channel Viewport position top left				
TaonChDoaitionEn	da	0.071	005141	;Icon Control Channel Viewport				
IconChPositionEnd	us	equ	00E14H	extents bot right				
ChOViewPositionS	tarta	0011	00E20H	;Channel 0 Viewport position top				
CHUVIEWPOSICIONS	LAILS	equ	UOEZOH	left				
Ch0ViewPositionE	nde	equ	00E24H	Channel 0 Viewport extents bot				
CHUVIEWPOSICIONE	nus	equ	00EZ4H	right				
ChlViewPositionS	tarta	9011	00E30H	;Channel 1 Viewport position top				
CIIIVIEWPOSICIOIIS	LAILS	equ	OOFSOH	left				
ChlViewPositionE	nda	equ	00E34H	;Channel 1 Viewport extents bot				
CIIIVIEWFOSICIOIIE	nus	equ	0013411	right				
ChaulewDogitionSt	tarta	9011	00E40H	;Channel 2 Viewport position top				
Ch2ViewPositionStarts		eyu	002404	left				
Ch2ViewPositionE	nds	equ	00E44H	;Channel 2 Viewport extents bot				
		cyu	0001111	right				
VerticalCounter		equ	00E9AH	;Vertical counter - Current scan-				
, er er carcounter		cyu	00107111	line displayed				
				time aroptarea				

RenderingSyncsele	ect	equ	00EE0H	;Rendering Synchronization Selec- tion reg
SCALDELAYENA		equ	0100000008	;Enable exclusion delay (16 lines) for scaler
SYNCENDLINE		equ	00000 <u>1</u> 000B	Render after end line of selected Viewport
SYNCSTARTLINE		equ	00000 <u>0</u> 000В	Render after end line of selected Viewport
;Video Capture ec	nates			
VideoPortConfig	1	equ	420h	;enable/disable
VideoPortMaxHeigh	+	equ	424h	;video port height
ChScaler00ffsets		-	00B20H	;Scaler 0 Channel display X,Y
		equ		offsets
ChScaler0SIndex		equ	00B24H	;Scaler 0 Channel attached sur- face index
ChVidCapOffsets		equ	00BE0H	;Video Capture Channel display X,Y offsets
ChVidCapSIndex		equ	00BE4H	;Video Capture Channel attached surface index
ChScaler0Format		equ	00D20H	;Scaler 0 Channel Format
;				
; Deferred Contro	l Port	2		
DeferredControlSt	art	equ	04000H	;Offset into deferred control area
; 2D Rendering Co	ntrol			
; Commands		1098	765432109876	55432109876543210
CMD_NOP	equ			00000000000000000000000000000000000000
NOLOAD	-			0100000000000000B;No parameter load
	equ			00000000000000000000000000000000000000
EXEC_OPAQUE_RECT	equ			gle
EXEC_TRANS_TEXT	equ	0000	000000000000000000000000000000000000000	00000 <u>0010</u> 0000000B;Draw Transparent text
EXEC_OPAQUE_TEXT	equ	0000	000000000000000000000000000000000000000	000000110000000B;Draw OPaque text
EXEC_LOAD_MPATTER	N equ	0000	000000000000000000000000000000000000000	00000000000000000000000000000000000000
EXEC_LOAD_CPATTER	N equ	0000	000000000000000000000000000000000000000	00000010100000000B;Load color pattern
EXEC_PAT_COPY	equ			00000011000000000B;Pattern Copy
EXEC_NEXT_INSYNC	equ			0000011100000000B;Execute Synchro-
	૦નુલ			nously
EXEC_CMD	equ	0000	000000000000000000000000000000000000000	00000111100000000B;Execute Command
EKEC_CHD	cqu	0000	000000000000000000000000000000000000000	specified in Flags
				register
; Parameters				
-	0071	0000	000000000000000000000000000000000000000	01000000000001000B;Destination X,Y
DestXY	equ			
XYExtents	equ			01000000000000001100B;Dest. X,Y extents
SrcXY	equ			01000000000000000000000000000000000000
ClipULXY	equ			01000000000000000000000000000000000000
ClipLRXY	equ	0000	000000000000000000000000000000000000000	010000000000 <u>0111</u> 00B;Clip Lower Right
				Х,Ү

FLAGs		equ		lags Register		
SURFACEBas	seIndez	k equ		rc. Dest. Base		
_				dices		
FGColor		equ		oreground		
DCCaler				lor		
BGColor		equ		ackground		
TRANSColor	-	equ		Color ;Transparent		
1101.000101	-	044		lor		
; FLAGs Re	egister	Defini	tion			
;			4321098765432109876543210			
F_BYTE				byte aligned		
F_WORD				word aligned		
F_DWORD	-			dword aligned		
F_BIT	equ	00000000	0 <u>11</u> 00000000000000000000B ;Image data	_		
			;- valid wit	h mono data		
			only			
F_XN	equ	00000000	—	g – origin at		
F_XP	equ	0000000	top left 000000000000000000000000000000000000	a – left to		
<u>r_71</u>	cqu	00000000	right	g icit to		
F_YN	equ	00000000	00001000000000000000000000000000000000	q		
_ F_YP				g - top to bot-		
			tom			
			; If Bit 12	is 0 - Mono		
			Source			
F_MPT	equ	0000000	000000 <u>1</u> 0000000000000000B ;Mono Blt - ;	pattern		
			transparent			
F_MNORMAL	equ	00000000		color expand		
			_	nd, 0==Back-		
F_MBT	equ	0000000	ground 00000001000000000000000 ;Mono Blt Tr	ancharency		
r_nb1	equ	00000000		nd transparent		
F_MFT	equ	0000000	00000010000000000000000000000000000000	-		
	044			nd transparent		
F_MINVERT	equ	00000000		color expand		
	_		;0==Foregrou	nd, 1==Back-		
			ground			
			; If Bit 12	is 1 - Color		
			Source			
F_TCINVERT	-		—	r transparency		
F_TCOPAQUE	I equ	0000000	0000000 <u>00</u> 00000000000000000000B ;No color tr	ansparency		

F_TCSRC	equ	00000000000000001000000000000000000000
		parency
F_TCDEST	equ	000000000000001000000000000000000000B;Color Destination
		transparency
F_TCPAT	equ	0000000000000110000000000000000B;Color Pattern
		transparency
F_CLIP	equ	0000000000000000100000000000000000B;Enable clipping
F_NOCLIP	equ	00000000000000000000000000000000000000
F_USEPATTERN	equ	00000000000000000000000000000000000000
F_USEBGCOLOR	equ	00000000000000000000000000000000000000
		color for pattern
F_LOCALMEM	equ	00000000000000000000000000000000000000
		_ ory
F_IMGDATA	equ	00000000000000000000000000000000000000
		_ ory
F_MONO	equ	00000000000000000000000000000000000000
		chrome
F_COLOR	equ	000000000000000000000000000000000000B;Source Format Color
CMD_BITBLT	equ	00000000000000000000000000000000000000
CMD_LINE	equ	00000000000000000000000000000000000000
CMD_MEMTEST	equ	00000000000000000000000000000000000000
F_ROPMASK	equ	00000000000000000000000000000000000000

6.14.2 Macros

The following macro is used to generate deferred an address value for its immedate register. The register address must be ORed with the physical screen base address and written to the deferred port data area followed by the register data (both values must be doubleword). These writes are recorded into the deferred buffer and immedate registers are written with this data during VBLANK (replay).

Load Deferred Register Address with DWORD

LDAD MACRO reg,labl mov reg,PhyCmdPortAddress add reg,labl ENDM

6.14.3 Clock Synthesizer Programming Guide

There are three Phase-Locked Loop-based programmable clock synthesizers in SM3110 for the two display clocks (DCLK and PCLK) and one memory/2D/3D engine clock (MCLK) from an externally supplied reference frequency. Each of the output frequencies may be programmed to up to 400 MHz. An external, crystal-controlled oscillator generates the reference frequency (typically 14.31818 MHz) that is driven into the SM3110 on pin Y22. Alternatively, an external crystal can be connected between pins Y22 and W23 to generate the reference frequency. All three PLL synthesizers in the SM3110 are the same design.

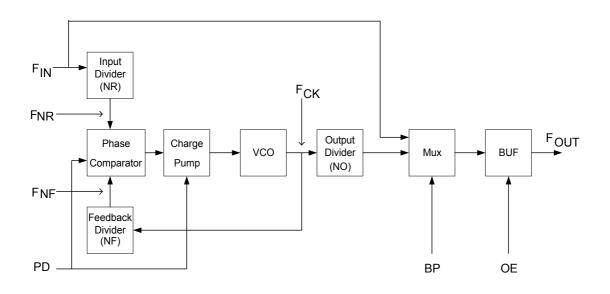


Figure 6-18. PLL Block Diagram

6.14.3.1 Theory of Operation

The Phase Comparator compares the phase difference of the input clocks from Input Divider (or Reference Divider), F_{NR} , and Feedback Divider (or Loop Divider), F_{NF} . If the edge of F_{NR} arrives earlier than the edge of F_{NF} , the output of the comparator adjusts the Charge Pump to provide a higher voltage to VCO, which increases the frequency of F_{CK} and brings the edge of F_{NF} earlier. If F_{NR} is later than F_{NF} , the Charge Pump decreases the voltage supplied to the VCO, which decreases frequency of F_{CK} and delays the edge of F_{NF} . With both edges aligned all the time, their frequencies must be the same, too.

With programmable Input and Feedback Dividers, the F_{NR} and F_{NF} can be at the same frequency while F_{IN} and F_{CK} can be different frequencies. This means the SM3110 can provide a wide range of output frequencies F_{CK} with a fixed input reference frequency F_{IN} .

The Output Divider provides a wider output frequency range for F_{OUT} while it keeps the VCO running at narrower, optimized range. Without this divider, F_{OUT} would have to have the same frequency range as F_{CK} .

These clock synthesizers have built-in power management which is controlled by signal PD. It can turn off the clock circuit to save power when not in use. The output buffer can also be turned off with signal OE.

The BP signal controls a muxing bypass circuit. When the BP signal is set to bypass mode, the output F_{OUT} and input F_{IN} have the same frequency.

6.14.3.2 Registers

Two registers control each clock synthesizer. In the first register, two byte specify the three (reference, feedback loop and output) dividers. In the second register, one byte controls the output and the PLL/VCO power down.

6.14.3.3 Frequency Control for Memory/Dot/Panel Clock

Index	Field	Access	Function
+080H	15:00	R/W	MCLK Loop Control
+0090H	15:00	R/W	DCLK Loop Control
+1090H	15:00	R/W	DCLK Loop Control
	Bits	Field	
	15:14	Output	Divider
		Value	Semantics
		0	NO has no division
		1	NO is divide by 2
		2	NO is divide by 2
		3	NO is divide by 4
	Bits	Field	
	13:09	Referen	ce Divider
		Value	Semantics
		0	Reserved
		1-31	Divide ratio (NR) is this value plus two
	Bits	Field	
	08:00	Feedbac	k Loop Divider
		Value	Semantics
		0	Reserved
		1-511	Divide ratio (NF) is this value plus two

The actual divide values for NR and NF are the binary values programmed in this register, bit 13 to 9 for NR and bit 8 to 0 for NF, plus two. For example, if the binary value in bit 13 to 9 is 10011 (decimal 19), the actual dividing value for Input Divider is decimal 21. If the binary value in bit 8 to 0 is 011001010 (decimal 202), the actual dividing value for Feedback Divider is decimal 204. The actual divide value for NO is specified in the register definition.

6.14.3.4 VCO Control for Memory Clock Synthesizer

Index	Field		Function						
+082H	07:00	R/W	MCLK VCO Control						
	Bits	Field							
	07		lodule Internal Bypass Control (BP)						
		Value	Semantics						
		0	Disabled. <i>Default</i> , normal operation.						
		1	Enabled.						
	Bits	Field							
	06		lodule Internal power down Control (PD)						
		Value	Semantics						
		0	Disabled <i>Default</i> , normal operation.						
		1	Enabled. PLL is in power down mode.						
	Bits	Field							
	05		Tree Source Select (Set by level of strapping input from ROMA1. Input						
			up to VDD.)						
		Value	Semantics						
		0	External Clock						
		1	Internal PLL Clock. Default.						
	Bits 04	Field	211. Countar to Working Desistor						
	04	Value	PLL Counter to Working Register						
		Value 0	Normal Operation. <i>Default</i> .						
		1							
	D#+	Field	Load Register. Automatically returns to 0 after loading working register.						
	Bits 03:02	Reser	ved						
	01	Value	Iodule Internal output enable Control (OE) Semantics						
		value 0	Enabled						
		1							
	Dite	Field	Disabled						
	Bits 00		Tree Source Enable						
	00	Value	Semantics						
		0	Disabled. MCLK forced to '0'.						
		1	Enabled. MCLK running.						

Index Field Access Function +0092H 07:00 R/W DCLK VCO Control (CRT) DCLK VCO Control (LCD) +1092H 07:00 R/W Bits Field 07 PLL Module Internal Bypass Control (BP) Value Semantics Disabled. Default, normal operation. 0 1 Enabled. Bits Field 06 PLL Module Internal power down Control (PD) Value Semantics Disabled Default, normal operation. 0 1 Enabled. PLL is in power down mode. Bits Field Clock Tree Source Select (Set by level of strapping input from ROMA1. Input 05 pulled up to VDD.) Value Semantics 0 External Clock 1 Internal PLL Clock. Default. Field Bits Load PLL Counter to Working Register 04 Value Semantics Normal Operation. Default. 0 1 Load Register. Automatically returns to 0 after loading working register. Field Bits PLL Module Internal output enable Control (OE) 03 Value Semantics 0 Enabled 1 Disabled

6.14.3.5 VCO Control for Dot/Panel Clock Synthesizer

VCO Control for Dot/Panel Clock Synthesizer (continued)

Bits	Field										
02	Referer	Reference Internal Oscillator Pad Control (Power Down)									
	Value	Semantics									
	0	Enabled. Default.									
	1	Disabled. shut down oscillator to reduce power dissipation in sleep									
		mode.									
Bits	Field										
01	Divide F	Ratio Select									
	Value	Semantics									
	0	VGA DCLK Frequencies, VGA Mode. Default.									
		Use divide ratio specified in either 94 95H or 96 97H selected by									
		CCH[3:2].									
	1	Programmable DCLK Frequencies, Enhanced Mode.									
		Use divide ratio specified in F0 F1H.									
Bits	Field										
00	Clock T	ree Source Enable									
	Value	Semantics									
	0	Disabled. DCLK forced to '0'.									
	1	Enabled. DCLK running.									

6.14.3.6 Selecting Register Value

The output frequency of VCO, F_{CK}, is determined by following equation:

 $F_{CK} = F_{in} * (NF / NR)$

Where F_{CK} is the output frequency of VCO, F_{in} is the input reference frequency, NR is the input divider value, and NF is the feedback divider value.

The output frequency is determined by following equation:

Where F_{out} is the output frequency, F_{in} is the input reference frequency, NR is the input divider value, NF is the feedback divider value and NO is the output divider value.

6.14.3.7 Programming Limitations

The synthesizer is very flexible. It doesn't have any special requirement of the programming order. However, VCO output frequency, F_{CK} , should be kept in its mid frequency range, which is about 200 MHz.

Bit 4 of the 082H, 0092H and 1092H registers is used to load the divider value into each PLL. These registers should be the last ones programmed when changing any divider values.

6.14.3.8 Register Values for Common Frequencies

The table below shows most of the frequencies required by VESA defined modes. This table is shown only as a programming example. There may be other register values not shown which can be used to achieve the same frequency. Please consult the equations in the earlier section for programming values. This table is based on reference input clock FIN at 14.31818 MHz.

Resolution	Refresh	NF	NR	NO	VCO	Actual	Pixel	% Error
	Rate	Register	Register	Register	Freq.	Freq.	Clock	
		Value	Value	Value			Freq.	
640x480	60	216	29	3	100.7	25.17	25.175	-0.02
640x480	75	42	3	3	126	31.5	31.5	0
640x480	56	169	15	3	144.04	36.01	36	0.03
800x600	60	188	15	3	160.04	40.01	40	0.02
800x600	75	247	16	3	198.08	49.52	49.5	0.04
800x600	72	431	29	3	200	50	50	0
800x600	85	438	26	3	225	56.25	56.25	0
1024x768	60	343	17	3	260	65	65	0
1024x768	70	218	19	2	150	75	75	0
1024x768	75	31	1	2	157.5	78.75	78.75	0
1024x768	85	64	3	2	189	94.5	94.5	0
1280x1024	60	345	21	2	216.02	108.01	108	0.01
1280x1024	75	130	5	2	270	135	135	0
1280x1024	85	64	1	2	315	157.5	157.5	0
1600x1200	60	179	6	2	323.96	161.97	162	-0.02
1600x1200	65	96	2	2	350.8	175.4	175.5	-0.06
1600x1200	70	130	3	2	378	189	189	0
1600x1200	75	97	5	0	202.5	202.5	202.5	0
1600x1200	85	318	18	0	229.1	229.09	229.5	-0.18

7 Application Notes

7.1 Overview

The Application Notes elaborate on issues arising from designing this chip into computer systems. The first one, Board Design, covers board design by pin function group. Each section has a simple pin connection diagram, showing different designs where there is more than one way to use these pins.

The On-Board testing section describes how to use the built-in testing functions in SM3110 to isolate motherboard problems without removing the SM3110 from the board.

The Programmable I/O section shows the use of both types of programmable I/O in SM3110 in customizing system designs with unique functions.

The Power-On Configuration section describes the chip configuration that must be set at power up time for SM3110 to function properly on each system type.

7.2 Board Design

The board is divided into sections, with each functional pin group having a block diagram as an overall view of display subsystem, including the host interface, reference clock, LVDS interface, LCD panel interface, CRT interface, BIOS ROM interface, TV encoder interface and power-on strapping.

7.2.1 Power Supply

The SM3110 uses 3.3V and 2.5V. The 3.3V is only for the I/O pads and should be applied to the power pins marked as VDD_IO.

2.5V power has been divided into several sections. The first one, VDD_C, is for the digital core section. This section requires the highest current in the 2.5V section when the chip is in normal operation. The VDD_R is the 2.5V for embedded memory section. VDD_P and VDD_S are 2.5V for digital section of internal PLLs and DLL section, respectively. AVDD_P, AVDD_S, and AVDD_D are 2.5V for analog portion in PLLs, DLL, and DACs, respectively. PCB layout for these different power supplies must be done carefully to prevent noise generated from one section coupling into any other section. A ground layer in the PCB is recommended for the entire display subsystem section.

7.2.2 Block Diagram

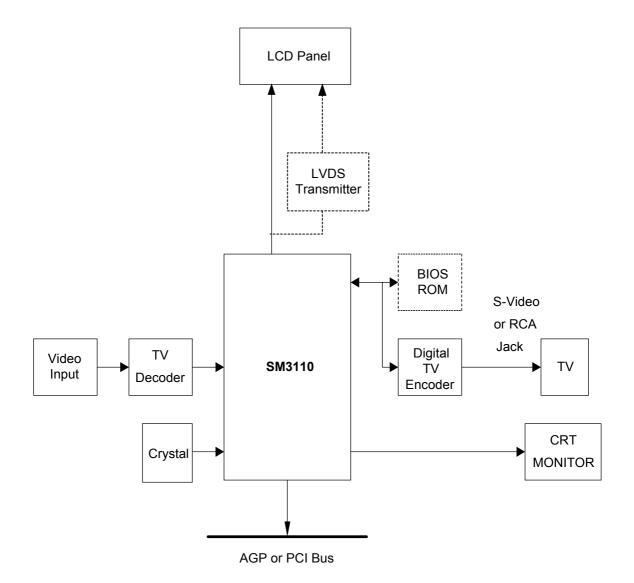
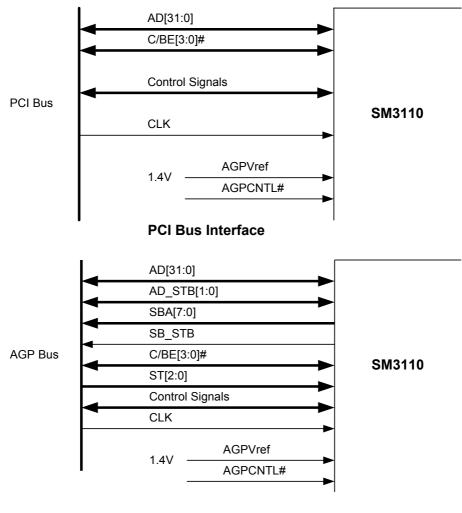



Figure 7-1. SM3110 System Diagram



7.2.3 Host Interface

The SM3110 supports either AGP 1X/2X or PCI 66 MHz interface. A power-on strapping pin determines the interface type and must be set correctly for communicating with the CPU. See the Power-On Configuration section for details of strapping options.

AGP Bus Interface

The 2X AGP bus uses strobing signals on the receiving side to latch input data at the correct time. The layout of these strobing signals and their corresponding data/address lines must be carefully done to ensure the trace lengths are within specification (see AGP Specification version 2.0 and AGP Platform Design Guide for more detailed layout considerations).

7.2.4 Reference Clock

The SM3110 requires a single reference clock input for its internal PLLs. These PLLs can be programmed individually to generate 3 different clocks used by the chip. The typical frequency of this reference clock is 14.31818 MHz. However, it can be any frequency from 2 MHz to 40 MHz. This clock can be from either a crystal (with external resistors and capacitors) or a CMOS level oscillator. Please refer to the drawing below for the usage of these two types of circuit.

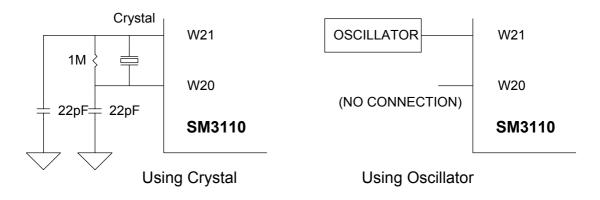


Figure 7-3. Reference Clock Methods

7.2.5 LCD Panel Interface

The SM3110 provides 36 pixel data pins and all other timing and control pins needed to interface with any LCD flat panel. It supports 8-bit, 16-bit, or 12+12-bit DSTN panel. For TFT panel, 9-bit, 12-bit, 18-bit, 24-bit, 9+9-bit, 12+12-bit, and 18+18-bit are supported. The data/pin assignment is listed in Table 7-1.

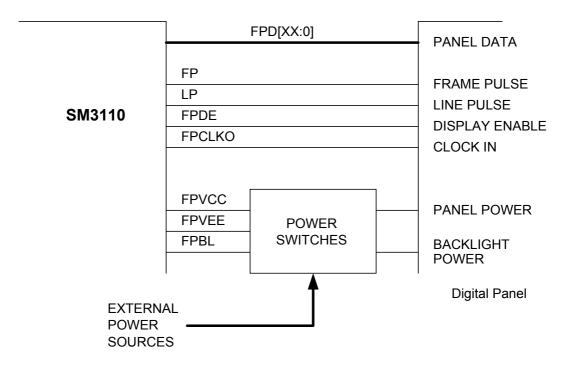


Figure 7-4. Digital Panel Interface Diagram

7.2.6 LVDS Transmitter Interface

SM3110's 36 pixel data, timing and control pins can interface with any LVDS transmitter(s), which can in turn drive an LCD panel with an LVDS interface.

The SM3110 supports 8-bit, 16-bit, or 12+12-bit DSTN panels as well as 9-bit, 12-bit, 18-bit, 24-bit, 9+9-bit, 12+12-bit and 18+18-bit TFT panels. The data/pin assignment is listed in Table 7-1.

To drive a panel through the LVDS interface, an LVDS transmitter chip is required. A block diagram is provided below for reference.

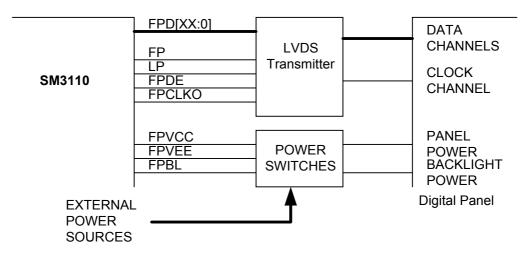


Figure 7-5. LVDS Panel Interface

	TFT									
		Single Pixel Double Pixel							DSTN	
Bit per Pixel	9	12	18	24	9+9	12+12	18+18	4+4	8+8	12+12
Pin Name										
FPD0	B0		B0			B0	FB0	UR1	UR0	UR0
FPD1	B1		B1		F	B1	FB1	UG1	UG0	UG0
FPD2	B2		B2			B2	FB2	UB1	UB0	UB0
FPD3	B3		B3			B3	FB3	UR2	UR1	LR0
FPD4	B4		B4			B0	FB4	LR1	LR0	LG0
FPD5	G0		B5		S	B1	FB5	LG1	LG0	LB0
FPD6	G1		B6			B2	SB0	LB1	LB0	UR1
FPD7	G2		B7			SB3	SB1	LR2	LR1	UG1
FPD8	G3		G0		F	G0	SB2	-	UG1	UB1
FPD9	G4		G1		F	G1	SB3	-	UB1	LR1
FPD10	G5		G2			G2	SB4	-	UR2	LG1
FPD11	R0		G3			G3	SB5	-	UG2	LB1
FPD12	R1		G4		S	G0	FG0	-	LG1	UR2
FPD13	R2		G5			G1	FG1 FG2	-	LB1	UG2
FPD14	R3		G6			SG2		-	LR2	UB2
FPD15	R4		G7		S	SG3		-	LG2	LR2
FPD16	-	-	R0		FR0		FG4	-	-	LG2
FPD17	-	-	R1		F	R1	FG5	-	-	LB2
FPD18	-	-	R2		F	R2	SG0	-	-	UR3
FPD19	-	-	R3		F	R3	SG1	-	-	UG3
FPD20	-	-	R4		S	R0	SG2	-	-	UB3
FPD21	-	-	R5		SR1		SG3	-	-	LR3
FPD22	-	-	R6		SR2		SG4	-	-	LG3
FPD23	-	-	R7		S	R3	SG5	-	-	LB3
FPD24	-	-	-	-			FR0	-	-	-
FPD25	-	-	-	-			FR1	-	-	-
FPD26	-	-	-	-			FR2	-	-	-
FPD27	-	-	-	-			FR3	-	-	-
FPD28	-	-	-	-			FR4	-	-	-
FPD29	-	-	-	-			FR5	-	-	-
FPD30	-	-	-	-			SR0	-	-	-
FPD31	-	-	-	-			SR1	-	-	-
FPD32	-	-	-	-			SR2 SR3	-	-	-
FPD33	-	-	-	-				-	-	-
FPD34	-	-	-	-			SR4	-	-	-
FPD35	-	-	-	-			SR5	-	-	-

Table 7-1. FPD[35:0] Different Panel Type Settings

7.2.7 CRT Monitor Interface

The SM3110 uses a standard analog RGB interface to drive a CRT monitor. Two customer I/O pins, CIO[1:0], use the standard DDC2B protocol to communicate with monitor. The output of DACs are designed to drive a 37.5 Ohm load. The optimum loading connection is a 75 Ohm resistor to the ground and a 75 Ohm cable load to the VGA connector. The PCB layout for this section needs to be done carefully, since these analog signals are prone to noise.

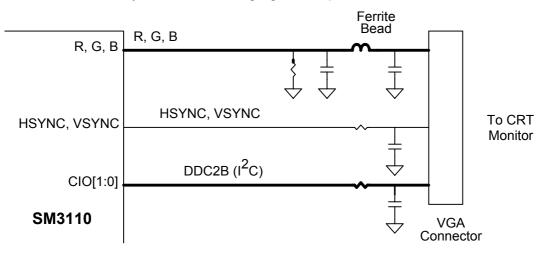


Figure 7-6. CRT Monitor Interface

7.2.8 BIOS ROM Interface

The SM3110 supports external BIOS ROM. The ROM can be EPROM, EEPROM, or flash ROM for easy field update. The ROM size can be either 32 KB or 64 KB, set by a power-on strapping pin.

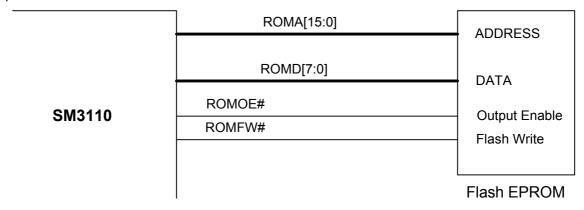


Figure 7-7. BIOS ROM Interface

7.2.9 Analog and Digital TV Encoder Interfaces

The SM3110 supports both analog and digital types of TV encoders. The analog type receives data from RGB lines in a CRT monitor interface. A typical hook-up is shown in Figure 7-8, using Chrontel's CH7002 analog encoder. The digital type can use either ROM interface or panel interface. For most applications, the ROM interface is where the external TV encoder chip connects. The ROM interface provides 16 bits of RGB data and timing signals (HSYNC, VSYNC and DCLK) for the encoder chip. Any TV encoder chip that can accept 16-bit RGB non-interlace signal can be used. A Chrontel CH7003/7004 is used in the sample design illustrated in Figure 7-9. Please refer to the Alternate Output Function portion of the Datasheet and the Register Summary for detailed signal assignment and register controls.

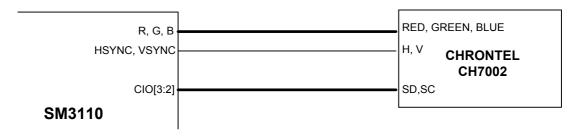


Figure 7-8. Analog TV Encoder Interface

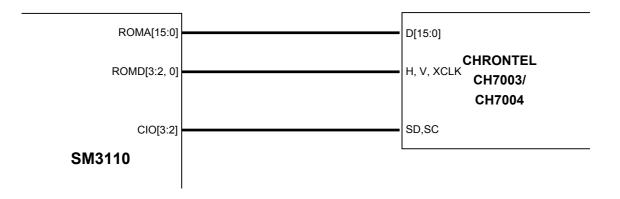


Figure 7-9. Digital TV Encoder Interface

7.2.10 TV Decoder Interface

The SM3110 supports an external TV decoder chip to provide live video window and video capture functions. The interface can connect to either standard PCMCIA ZV Port or Philips' SA7111/7112 (or compatible) TV decoder chip. The connection is straightforward, and the control to the external TV decoder is through the I^2C interface.

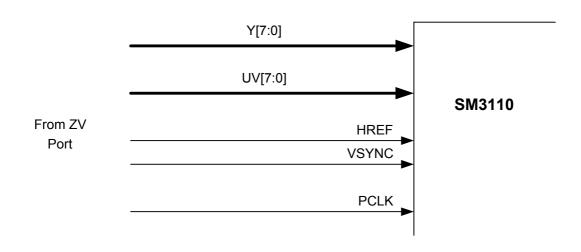


Figure 7-10. ZV Port-TV Decoder Interface

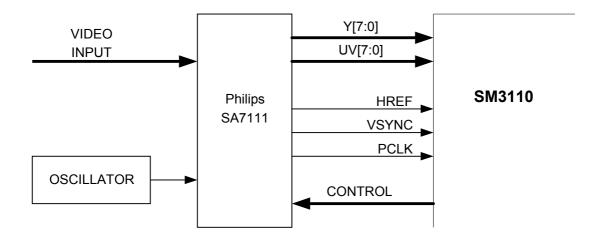


Figure 7-11. Philips TV Decoder Interface

7.3 Power-On Strapping

Eight pins in the ROM interface are also used as Power-On Strapping pins in setting SM3110 configuration within a particular system design. One of these pins is designed to control AGP/PCI interface selection, one is designed to select 32K/64K ROM size, two are for debugging use and four are for customer defined functions, such as panel type. These pins have an internal pull-up resistor and therefore default to "HIGH" without any external component. Refer to the alternate pin function section in the Datasheet.

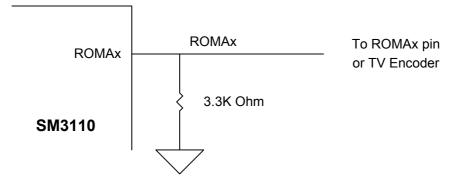


Figure 7-12. Power-on Strapping

7.3.1 Power-on Strapping Pins

Ball No.	Primary Pin	Configuratio	Note	
	Function			
		Default	w/Pull-down Resistor	
C23	ROMA8	CONFIG[0]		User Defined
D22	ROMA9	CONFIG[1]		User Defined
E21	ROMA10	CONFIG[2]		User Defined
F20	ROMA11	CONFIG[3]		User Defined
D23	ROMA12	32K ROM	64K ROM	
E22	ROMA13	Reserved		
F21	ROMA14	Reserved		
E23	ROMA15	AGP Host Interface PCI Host Interface		

7.3.2 Strapping Method

During reset time, RST# is low and ROMA8 through ROMA15 are forced to be input pins. Each pin has an internal pull-up resister to set the pin value high, if no external pull-down resister or other driving force is used to bring the signal level to low. At the trailing edge of reset (RST# changes from low to high), the values of these pins are latched into registers where they can be read by software. Because these functions are set according to the hardware configuration of the board, changes are not allowed. If they are somehow changed, the chip and board may not function properly.

7.3.2.1 External Pull Down Resistor

Each pin has internal pull-up resistor to default the pin value to high. Some pins have inverters between pin and register bit and so the default value in the register is inverted from the default value at the pin. Please refer to the *Registers* section below for the default value of each bit. If default value is the right setup for the bit, no external resistor is required. However, if the other value is needed, a 3.3K Ohm resistor should be added between the corresponding pin and ground.

7.3.2.2 Registers

The register bits that control these configuration functions are listed below.

Offset	Field	Access	Function		
+4C0H	7:00	R/O	Configuration Strapping		
		Bits	Field		
		07	AGP or PCI Select.		
			External Pull-down Resistor	Value	Semantics
			No (default)	0	PCI. Default.
			Yes	1	AGP
		Bits	Field		
		06:05	Reserved (must be zero))		
		bits	field		
		04	ROM Select (32K or 64K).		
			External Pull-down Resistor	Value	Semantics
			No (default)	0	32K
			Yes	1	64K
		Bits	Field		
		03:00	User Defined		
			External Pull-down Resistor	Value	Semantics
			Yes	0	User Defined
			No (default)	1	User Defined

7.3.2.3 Strapping Pin Functions

Host Interface

This pin determines what type of host interface the chip is talking to. The default is PCI.

ROM Size

This pin sets the external BIOS ROM size. The default is 32 KB. With a pull-down resistor, the size is set to 64 KB (this is only for the external BIOS ROM that interfaces to the chip through the chip's ROM interface).

User Defined

These pins are for user defined functions, such as panel type. Both the driver and the BIOS can read the register to determine what setting the system requires through any or all of these four pins.

Reserved

There are two reserved power-on strapping pins. These pins must NOT have external pull-down resistors.

7.4 Board-level Testing

The SM3110 currently implements two board-level testing modes: Connectivity Test Mode and Tri-State Mode.

7.4.1 Test Mode Control Pins

There are five pins that control test modes. The TEST# pin should be left unconnected in normal operation, since an internal pull-up sets the chip in normal operation mode. To enter test mode, this pin must be driven to low from outside the chip and maintained at that level during test operation.

The four other pins are used to select different test modes. These four pins have normal functions when TEST# is not connected. The table below lists the pin name (in normal mode and test mode), pin number and setting required for each different test mode.

Pin	Pin No.	C15	C2	B1	A1	D4	Test Mode
Name	Normal	TEST#	FPD28	FPD27	FPD26	FPD25	
	Test	TEST#	TEST3	TEST2	TEST1	TEST0	
Se	etting	1	-	-	-	-	Normal Operation
		0	0	0	0	0	Reserved
		0	0	0	0	1	Reserved
		0	0	0	1	0	Reserved
		0	0	0	1	1	Reserved
		0	0	1	Х	Х	Reserved
		0	1	0	Х	Х	Reserved
		0	1	1	0	Х	Reserved
		0	1	1	1	0	IO Connectivity Test
		0	1	1	1	1	Tri-State All Outputs

Table 7-2. Test Mode Control Pins

7.4.2 Test Modes

The I/O Connectivity Test Mode helps in identifying soldering problems on the PCB. In this mode, all digital pins except the TEST# pin and the TEST[3:0] pins are arranged to connect to either input or output of NAND gate array.

To perform this test, set TEST[3:0] to 0xE and apply logical highs to all input pins. All the output pins should then be at logical low. Any output that is not in the correct logic state indicates one of its inputs is either open or shorted to logic low. Next, toggle one input at a time from logic high to logic low and back to logic high; the corresponding output must change from logic low to logic high and back to logic low. All other outputs must stay at logic low. If the corresponding output does not change state, the input pin is open. If another output changes states with the corresponding output, one of its inputs is shorted to this input.

The Tri-State Test Mode isolates the chip from the board during the debugging of other board components. Set TEST[3:0] to 0xF to force all output drivers in output pins and bi-directional pins into tri-state mode.

Application Notes

The connection map is listed below, followed by tables of untested pins and unused pins.

	Input	(Output		
Pin	Sig. Name	Pin	Sig. Name		
Y4	INTA#	H22	IOTST7		
AC2	REQ#				
AC4	RBF#				
AC6	SB_STB				
Y6	SBA1	AC1	CLK		
AA8	SBA7				
AC8	AD31				
AA9	AD28				
Y8	SBA5	AA4	RST#		
AB10	AD27				
Y11	AD24				
Y13	AD22				
AB6	SBA2	AC3	ST0		
Y9	AD30				
AC9	AD29				
AA12	C/BE3#				
AB2	CLKRUN#	Y5	GNT#		
AC5	SBA0				
Y7	SBA3				
AC7	SBA4				
AB8	SBA6	AB4	ST2		
AC10	AD25				
AB12	AD23				
Y15	AD16				
			071		
Y10	AD26	AA5	ST1		
AC11	AD_STB1				
AA13	AD20				
AC13	AD19				

	Input	(Output		
Pin	Sig. Name	Pin	Sig. Name		
AC12	AD21	AA11	IDSEL		
Y14	AD18				
AC14	C/BE2#				
AA16	STOP#				
AB14	AD17	AC19	M66EN		
Y16	TRDY#				
AB16	DEVSEL#				
AC18	AD10				
AA15	FRAME#	F23	IOTST1		
AC16	C/BE1#				
Y19	AD13				
AB19	AD8				
AC15	IRDY#	G23	IOTST2		
AC17	AD14				
AA19	AD11				
Y23	AD4				
AA17	PAR	G22	IOTST3		
AA20	C/BE0#	022	101313		
AC22	AD5				
AA23	AD3 AD2				
7723	ADZ				
AB18	AD12	G21	IOTST4		
AC21	AD7				
AB23	AD0				
Y18	AD15	G20	IOTST5		
AB22	AD3				
Y21	AD6				
AC20	AD STB0	H23	IOTST6		
Y20	AD9				
AC23	AD1				
		· ·			

Application Notes

	Input		Output		
Pin	Sig. Name	Pin	Sig. Name		
K22	CIO6	H20	IOTST8		
K20	CIO4				
R3	CIO1				
U2	HSYNC				
E23	ROMA15	J23	MCLKOUT		
E21	ROMA10				
C23	ROMA8				
E22	ROMA13	J21	SCLKOUT		
F20	ROMA11				
L21	ZVPCLK				
A23	ROMA4				
F21	ROMA14	J20	PCLKOUT		
D23	ROMA12				
B23	ROMA5				
A21	ROMA1				
D22	ROMA9	T20	ZVVSYNC		
E20	ROMA3	120	20001110		
A22	ROMA3				
C20	ROMD7				
020					
C22	ROMA6	T21	ZVHREF		
D20	ROMA2				
A20	ROMD6				
D18	ROMD3				
B21	ROMA0	T23	ZVY7		
D19	ROMD5				
A18	ROMD2				
D16	ROMOE#				
A19	ROMD4	R20	ZVY6		
D17	ROMD1				
B16	ROMXR#				

	Input		Output
Pin	Sig. Name	Pin	Sig. Name
D14	FPDE		
A17	ROMD0	R21	ZVY5
D15	ROMFW#		
A15	FPBL		
A13	LP		
A16	ROMWR#	R22	ZVY4
A14	FP		
D12	FPVEE		
A12	FPD1		
B13	FPVCC	R23	ZVY3
D13	FPCLKO		
A11	FPD3		
A9	FPD9		
C12	FPD0	P20	ZVY2
D10	FPD4		
A10	FPD6		
A8	FPD11		
D11	FPD2	P22	ZVY1
C9	FPD8		
D7	FPD12		
A7	FPD14		
D 4 0	5005		71.0.40
B10	FPD5	P23	ZVY0
D8	FPD10		
B7	FPD13		
D6	FPD15		
C6	FPD16	N20	ZVUV7
			20007
A4 C4	FPD19 EPD23		
D1	FPD23 FPD31		
D9	FPD7	N21	ZVUV6

Application Notes

	Input		Output				
Pin	Sig. Name	Pin	Sig. Name				
A6	FPD17						
A3	FPD21						
D2	FPD30						
A5	FPD18	N23	ZVUV5				
D5	FPD22						
C1	FPD29						
E2	FPD34						
B4	FPD20	M20	ZVUV4				
A2	FPD24						
E4	FPD32						
F1	FPD38						
E3	FPD33	M21	ZVUV3				
E1	FPD35						
G4	FPD39						
H2	FPD44						
F4	FPD36	M22	ZVUV2				
H4	FPD42						
H1	FPD45						
L22	CIO2						
F3	FPD37	M23	ZVUV1				
G1	FPD41						
H3	FPD43						
K23	CIO7						
G2	FPD40	L20	ZVUV0				
J4	FPD46						
J2	FPD47						
T4	BLANK#						
K21	CIO5	U23	ZVCREF				
L23	CIO3						
R4	CIO0						
U1	VSYNC						

Untested Pins					
T1	DCLK				
U4	RSET				
V1	COMP				
V4	RED				
V3	GREEN				
W1	BLUE				
AA1	AGPCNTL#				
Y22	AGPVref				
W21	XCLK1				
W20	XCLK0				
C15	TEST#				
D4	FPD25				
A1	FPD26				
B1	FPD27				
C2	FPD28				

Unused Pins					
AA7	Reserved17				
AB21	Reserved21				
J1	Reserved1				
K1	Reserved4				
K3	Reserved3				
K4	Reserved2				
L1	Reserved7				
L2	Reserved6				
L4	Reserved5				
M1	Reserved8				
M3	Reserved9				
M4	Reserved10				
N1	Reserved11				
N2	Reserved12				
N4	Reserved13				
P1	Reserved14				
P3	Reserved15				
P4	Reserved16				
R1	VREFIN				
R2	VREFOUT				
Y12	Reserved19				
Y17	Reserved20				

7.5 Programmable (Peripheral) I/O

There are two types of programmable I/O in the SM3110. The first is through eight 'customer' I/O pins and the second type is peripheral I/O which uses the ROM interface address and data pins plus two command pins.

7.5.1 Customer I/O

The eight customer I/O pins are controlled directly by register bits. These pins can be individually programmed to be either input or output pins. If set to be input, the value at the pin (either one (high) or zero (low)) can be read from corresponding register bit by software through the normal register read methods. If set as output, writing to the corresponding register bit will set the output value at the pin.

7.5.1.1 Customer Pins

Four of the eight pins are used for I^2C function to support DDC2B for CRT monitor and to provide TV encoder/decoder control. The remaining four pins are for customer-definable functions. They can be customized for each design and could control a number of different circuits on the system. Please refer to the table below for the pin number and its corresponding signal name.

Pin	Signal Name	Description
K23	CIO7	User programmer input/output [7]
K22	CIO6	User programmer input/output [6]
K21	CIO5	User programmer input/output [5]
K20	CIO4	User programmer input/output [4]
L23	CIO3	User programmer input/output [3]/I ² C Data Line
L22	CIO2	User programmer input/output [2]/I ² C Clock Line
R3	CIO1	User programmer input/output [1]/DDC2B Data Line
R4	CIO0	User programmer input/output [0]/DDC2B Clock Line

Table 7-3. Customer I/O Pins

7.5.1.2 Customer Registers

There are three bytes of register to control these pins. The first one is READ-ONLY and is for getting signal level of pins. The second one is for output level at pin. The third one is to control direction of pin. The offset and function of each register bit is described in following tables.

CIO Input

Offset	Field	Access	Function
+410H	07:00	R/O	Configurable Input Port
	Bits	Field	
	07:00	Input.	
		Value	Semantics
		0	Level at pin input is low.
		1	Level at pin input is high.

CIO Output

Offset	Field	Access	Function
+411H	07:00	R/W	Configurable Output Port
	Bits	Field	
	07:00	Output.	Write
		Value	Semantics
		0	Level to pin output is low.
		1	Level to pin output is high.
	Bits	Field	
	07:00	Output.	Read
		Value	Semantics
		0	Level last written to pin output is low.
		1	Level last written to pin output is high.

CIO Control

Offset	Field	Access	Function
+412H	07:00	R/W	Configurable Control Port
	Bits	Field	
	07:00	Enable.	Default is FFH, all bits disabled.
		Value	Semantics
		0	Output is enabled and pulled low.
		1	Output is disabled.

7.5.2 Peripheral I/O

The peripheral I/O shares ROM interface pins with other functions. Bit 3 and 2 in register offset 400H control the function of these pins. To use this function, both bits should be set to 0 for ROM function. Peripheral I/O functions share the ROMA[15:0] and ROMD[7:0] pins with the ROM interface but use different address range and command pins.

Peripheral I/O occupies a 64KB address range, offset 1FE0000H to 1FEFFFFH, in each 32MB of memory space within total 128MB of memory space reserved. The lower 16-bit of address will output to ROMA[15:0] pins during the command cycle. For read operation, ROMXR# will be asserted and data at ROMD[7:0] pins will be read. For write operation, ROMXW# will be asserted and data will place at ROMD[7:0] pins. Refer to the SM3110 Datasheet for specific timing values.

7.5.2.1 Peripheral I/O Pins

Pin	n Signal POWERUP		Alternate	Description		
	Name	Configuration	Function			
E20, C22, B23,	ROMA[7:0]		VDO[7:0]	ROM Address [7:0]/ Digital		
A23, A22, D20,				Data[7:0] for TV/TMDS/LVDS		
A21, B21				Encoder		
C23	ROMA8	CONFIG[0]	VDO8	ROM Address [8]/ Digital Data[8] for		
				TV/TMDS/LVDS Encoder		
D22	ROMA9	CONFIG[1]	VDO9	ROM Address [9]/ Digital Data[9] for		
				TV/TMDS/LVDS Encoder		
E21	ROMA10	CONFIG[2]	VDO10	ROM Address [10]/ Digital Data[10]		
				for TV/TMDS/LVDS Encoder		
F20	ROMA11	CONFIG[3]	VDO11	ROM Address [11]/ Digital Data[11]		
				for TV/TMDS/LVDS Encoder		
D23	ROMA12	32K/64K ROM	VDO12	ROM Address [12]/ Digital Data[12]		
				for TV/TMDS/LVDS Encoder		
E22	ROMA13	INT/EXT PLL	VDO13	ROM Address [13]/ Digital Data[13]		
				for TV/TMDS/LVDS Encoder		
F21	ROMA14	INT/EXT SCLK	VDO14	ROM Address [14]/ Digital Data[14]		
				for TV/TMDS/LVDS Encoder		
E23	ROMA15	AGP/PCI	VDO15	ROM Address [15]/ Digital Data[15]		
				for TV/TMDS/LVDS Encoder		
C20, A20, D19,	ROMD[7:4]			ROM Data [7:4]		
A19						
D18	ROMD3		HSYNC2	ROM Data [3]/ HSYNC for TV/		
				TMDS/LVDS Encoder		
A18	ROMD2		VSYNC2	ROM Data [2]/ VSYNC for TV/		
				TMDS/LVDS Encoder		
D17	ROMD1		DCLK2	ROM Data [1]/ DCLK for TV/TMDS/		
				LVDS Encoder		
A17	ROMD0		BLANK2#	ROM Data [0]/ BLANK# for TV/		
				TMDS/LVDS Encoder		
D15	ROMFW#			Flash ROM Flash Write Command		
D16	ROMOE#			ROM Output Enable		
A16	ROMWR#			Peripheral I/O Write Command		
B16	ROMXR#			Peripheral I/O Read Command		

7.5.2.2 Peripheral I/O Registers

There are six register bits which control these pins: bits [3:2] controls pin function, bits [6:4] control the command pulse width and bit 7 controls the address setup time (bits [1:0] are not part of this function). The details are shown below:

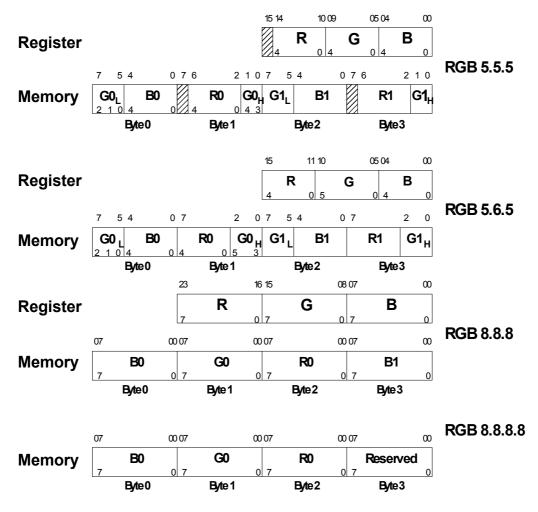
7:00		
/.00	R/W	Peripheral I/O Port Configuration
T	Field	
07	Address S	etup.
	Value	Semantics
	0	2 clocks. <i>Default</i> .
	1	1 clock.
6:04		
_	Value	Semantics
	0	12 clocks. Default.
	1-7	<i>value</i> +4 clocks.
3:02		t configuration
_	Value	Semantics
	11	Display 0
	10	Display 1
	01	Reserved.
	00	ROM
1:00	LCD Port	Configuration.
F	Value	Semantics
	11	Display 0
	10	Display 1
	01	Reserved.
	00	LCD
(6 3)7 [::04 [::02 [O7 Address S Value 0 1 Field :04 Strobe Wi 0 1-7 Field 0 :02 ROM port Value 11 :02 ROM port Value 11 :00 00 :00 LCD Port Value 11 10 01 00 10

Register bits [7:4] of offset 400H control the timing. Bit 7 selects address setup time, either at the default of two system clocks (SCLK) or only one system clock. ROMXR# and ROMXW# strobes (commands) pulse width is set by bits [6:4]. The pulse width is the value in these bits plus 4 system clocks (total range from 5 to 12 system clocks), where 000 in these bits is the default and is treated as 8 to get a total of 12 system clocks of pulse width. The address hold time is fixed at one system clock.

Bit value in 6:4	Clock Value of Bits 6:4	Width of address strobe in System Clocks
000 (default)	8	12
001	1	5
010	2	6
011	3	7
100	4	8
101	5	9
110	6	10
111	7	11

A Appendix A

A.1 Pixel Format Information


A.1.1 Enhanced Data Format

Pixels in RGB and ARGB, various YUV/YCbCr formats and CLUT4/8 are accepted for processing and display. Pixels are addressed in ascending order corresponding to a left to right, top to bottom (typical raster scan) of the display. All formats may be packed, i.e., there are no padding bytes between pixels at the end of one line and pixels at the start of the next line. Some facilities do support unpacked organizations of the pixel bit map by defining a stride to allow access or display of rectangular regions within a bitmap that are narrower than the line width.

A.1.2 RGB Pixel Formats

There are four RGB (15b, 16b, 24b, and 32b) pixel formats.

15b- xRGB 1.5.5.5

The most significant bit is unused and ignored during display.

16b - RGB 5.6.5

Note that the Green field pushes the Red field towards the most significant bit. It is not upwards compatible with the 5.5.5 format.

Appendix A

24b - RGB 8.8.8

This is standard packed 24bpp. Each line of a 24bpp bitmap is assumed to start on a double word boundary.

32b – *xxRGB* 8.8.8.8

The most significant byte is unused and ignored during display. This format is for display only; the 2D engine does not currently support this format.

Appendix A

A.1.3 Palettized/Color Lookup Table

CLUT 8

8 bit color index format is supported.

CLUT 4

4-bit packed color index format is supported for resolutions of 640×480 and above. Note that the 4-bit pixels are arranged left to right within a byte, i.e., the left-most pixel (lower/even) pixel is stored in bits [7:4] of each byte.

	8bj	op CLUT	8					
	31	242	23	16	15	080)7	00
Register	Р	3	Р	2	P	1	P	90
	07	000	07	00	07	000)7	00
Memory	Р	0	Р	1	P	2	P	3
	В	0	В	1	В	2	В	3
		4bpp C	LUT4 Pa	cked				
	31	242	23	16	15	080)7	00
Register	P6	P7	P4	Р5	P2	Р3	P0	P1
	07	000	07	00	07	000)7	00
Memory	P0	P1	P2	Р3	P4	Р5	P6	P7
	В	0	В	1	В	2	В	3

8hnn CLUT8

A.1.4 CLUT Data Format

The palette logically consists of 256 entries of 3×6 , formatted as 6.6.6 RGB. It is accessed from the CPU as xRGB 8.8.8.8, the most significant byte is not used. CLUT color component data ranges from 0...63; the least significant 6 bits of each byte are physically stored in the CLUT RAM.

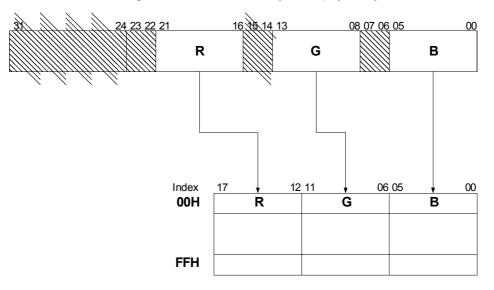
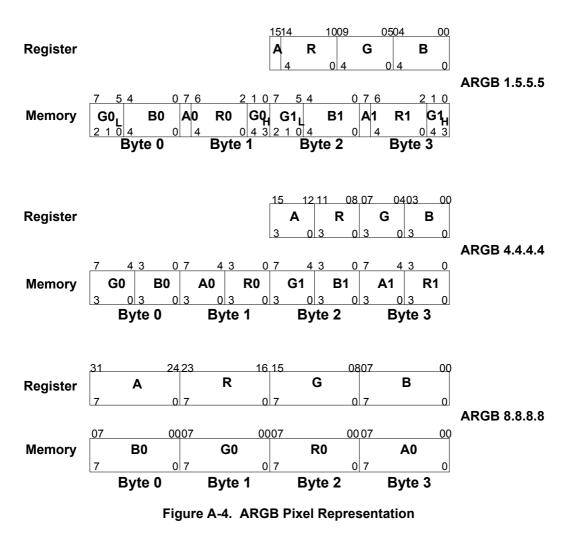


Figure A-3. VGA/2D CLUT Data Format

Appendix A

A.2 3D Data Formats

A.2.1 Coordinates


Single precision floating point	1.8.23
32-bit fixed point	0.11.21

A.2.2 RGB Pixel Formats

The same four RGB pixel formats (15b, 16b, 24b, and 32b) are supported as those defined for 2D operations (see Section A.1.2.).

A.2.3 ARGB Pixel Formats

There are three additional ARGB formats supported: 1.5.5.5, 4.4.4.4 and 8.8.8.8

A.2.4 Texel Formats

Palettized CLUT	1, 2, 4, 8
16b ARGB	1.5.5.5, 4.4.4.4
16b RGB	x.5.5.5, 5.6.5

Palettized/Color Lookup Table

The texture palette logically consists of 256 entries of 3×6, formatted as 6.6.6 RGB. It is accessed from the CPU as xRGB 8.8.8.8, the most significant byte is not used. The most significant 6 bits of each byte are physically implemented and the least significant 2 bits are discarded when writing to and forced to 0 when reading from the palette RAM. Note that this is different from the CLUT format for standard VGAs.

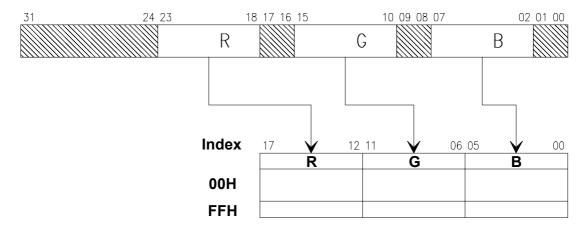


Figure A-5. 3D CLUT Data Format

CLUT 1, 2, 4

1, 2 and 4-bit packed color index formats are supported, with the pixels arranged left to right within a byte, i.e., the left-most (lower/even) pixel is stored starting in bit [7] of each byte.

CLUT 8

8-bit color index format is supported. Because of the little Endian representation, bytes are swapped within a doubleword when registers are written to memory. The relationship of individual pixels (in 1, 2, 4bpp CLUT) is not changed between registers and memory.

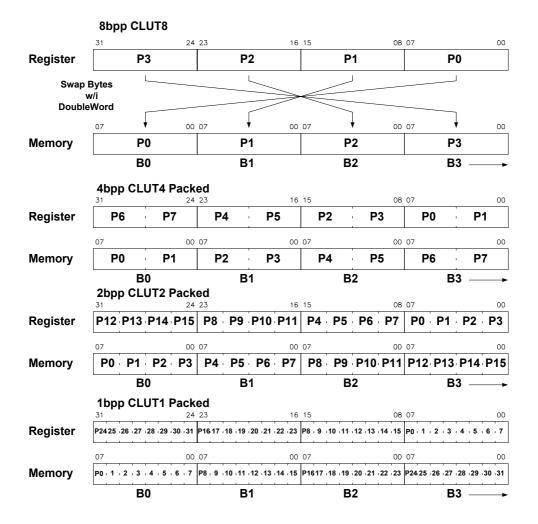


Figure A-6. CLUT 1/2/4/8b Pixel Representation

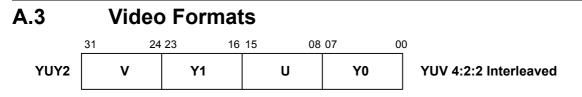


Figure A-7. YUV/YCbCr Pixel Representation

Interleaved YUV 4.2.2 (FourCC = YUY2) 16bpp format is supported.

The numeric format of the Y (luminance) pixels is an integer ranging from 16...235.

The numeric format of the U/V (chroma) pixels is an integer ranging from 16...240.

These are scaled upon display up to 0...255.

A.3.1 Cursor

A 2bpp mono and 16bpp color cursor are supported. The mono cursor format consists of interleaved words (16 pixels) of AND and XOR data. The color cursor consists of sequential 16b words with a 1.5.5.5 format. The most significant bit is the AND plane data and the remaining 15 bits contain the RGB color data.

Mono 2bpp										
31	24 23	16 15	08 07	00						
	AND Data		XOR Data							

Color 16bpp

31 30	26 25	21 20	16 15 14	10 09 0	5 04	00
A Red	d Green	Blue	A Red	Green	Blue	

Figure A-8. Cursor Formats

A.3.2 VGA Data Formats

In addition, standard VGA planar and packed pixel (linear) formats are supported for compatibility. To implement extended (higher resolution) SVGA, the address range must be extended beyond the 64KB or 128KB that is addressable by a standard VGA.

A.3.3 Planar

For pixels of 4 bits or less (16 colors or less), a planar representation is used. Four independently addressable bit planes (I, R, G and B) are accessed in parallel. Each pixel is composed of up to 4 bits from each of the four planes. The amount of memory required depends on the resolution. For a plane greater than 64KB, each 128KB can be addressed as either two segments of 64KB (configuration 2) or a single 128KB segment (configuration 1).

The read map select register in the VGA graphics controller and the map mask register in the VGA sequencer must be configured to control the access to individual planes.

A.3.4 Text

In text modes, data is arranged as a series of 16-bit words storing the character code (even byte) and attribute (odd byte). Character pairs are arranged starting at 0 (offset from the base of B0000H in mono or B8000 in color) with increasing addresses arranged across the screen from left to right, then down the screen. The (byte) stride of characters (from one character line to the next) is two times the number of characters per line because two bytes are used to store each character and attribute. The lowest resolution VGA text display of 40x25 is 1000 characters occupying 2000 bytes; the highest SVGA text resolution of 132x60 is 7920 characters occupying 15840 bytes. The format of a text attribute byte and the encoding of the colors are shown in Figure A-9. VGA Text Attributes.

07	06	05	04	03	02	01	00
Blink	Ва	ickground	Color	Intensity	Fore	ground Co	olor

	Default Color	Mono
0	Black	Black
1	Blue	Underline
2	Green	
3	Cyan	
4	Red	
5	Magenta	
6	Brown	
7	White	Color

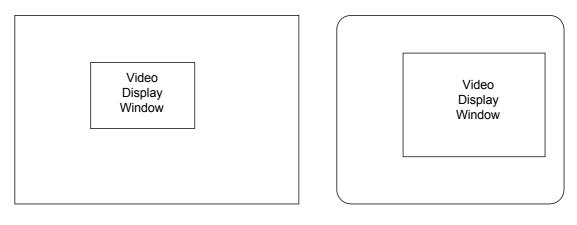
Figure A-9. VGA Text Attributes

A.3.5 Packed Pixel/Linear

This format is identical to that used in enhanced modes: 4bpp and 8bpp are supported and each pixel is stored consecutively in ascending order corresponding to a left to right, top to bottom traversal of the display.

B Appendix B

B.1 Graphics Modes Support


B.1.1 Video Display Window Memory Constraints

Presenting television images in one or both of the possible video displays (LCD and/or CRT) is dependent upon the memory required for the size and color depth of the physical displays; the memory required for the dimensions and color depth of the individual television display windows within those physical displays; and the amount of memory required by the motion compensation buffers for the desired video displays. Fortunately, the motion compensation buffers can easily be accomodated by SM3110's embedded 4MB RAM. Motion compensation requires only about three megabytes to display a full-sized NTSC stream and about three and a half megabytes for PAL, leaving plenty of memory for standard display operations.

B.1.2 Definitions

The LCD or CRT will be termed the 'physical display', and the color depth of the physical display will be referred to as the '2D background' (this is also sometimes described as the 'desktop'). A video stream is displayed in a 'video display window'.

Note: The video display window will always have the same color depth as the 2D background, courtesy of the color space conversion built into the video processing stream.

LCD PANEL

CRT

Figure B-1. Video Display Terminology

B.1.3 Motion Compensation Memory Requirements

The motion compensation buffers consist of the video front, video back and processing buffers. The processing buffers require (given that the three-frame MPEG processing model is used)

1.5 bytes/pixel X 3 X (Frame size: 720X480 for NTSC, 720X576 for PAL) = bytes

That's 1,555,200 bytes for NTSC and 1,866,240 bytes for PAL.

The video front and video back buffers require

2 bytes/pixel X 2 buffers x (video display window frame size*) = bytes

That value is 1,382,400 bytes for full-size NTSC and 1,658,880 bytes for full-size PAL.

Note: Use the full frame size in this calculation unless the video display window size will be less than half the input frame size. The pre-scaler will not scale down video (and thereby reduce memory requirements) unless it is asked to reduce the size to less than half the original size.

B.2 Graphics Modes Summary

Parameter	Bytes
Memory Size (4Meg)	4,184,064
System Overhead in Memory	131,072
Icon Overhead	1,024
Memory Available For Display and Video	4,051,968
NTSC Video Source Standard Size (720x480; 16 bpp)	1,382,400
NTSC Video Quarter-Screen Size (Horizontal Predecimation)	691,200
PAL Video Source Standard Size (720x576; 16 bpp)	1,658,880
PAL Video Quarter-Screen Size (Horizontal Predecimation)	829,440
NTSC Motion Comp Memory Size (720x480x3; 12 bpp"plus 720x480x2, 16bpp)"	2,937,600
PAL Motion Comp Memory Size (720x576x3; 12 bpp)"plus 720x576x2, 16bpp)"	3,525,120

Note: Simultaneous video (same size, color depth) on two displays uses the same memory and supports the same modes as single display.

Note on Table Nomenclature:

- 1. Video is double-buffered
- 2. LCD: DSTN requires more memory than TFT
- 3. Single 1/4 video: classic ""small-window" " video via video capture" allows memory requirement reduction using horizontal predecimation.

B.2.1 S	B.2.1 Single Display with NTSC Video												
Size		Color Depth by Memory Load Configuration (bpp)											
Single	Dis	splay	Disp	olay +	Disp	olay +	Disp	olay +					
Display	C	Ily	1/4 N	NTSC	1 N	TSC	NTSC	C DVD					
"TFT, DSTN,"				deo	Vie	deo							
or CRT	TFT/		TFT/		TFT/		TFT/						
	CRT	DSTN	CRT	DSTN	CRT	DSTN	CRT	DSTN					
320 x 240	32	32	32	32	32	32	32	32					
640 x 480	32	32	32	32	32	32	24	24					
800 x 600	32	32	32	32	32	32	16	16					
1024 x 768	32	32	32	32	24	24	8	8					
1280 x 1024	24	16	16	16	16	8							
1600 x 1200	16	8	8	8	8	8							

Note: -- = mode not supported

B.2.2 Single Display with PAL Video

Size		Color Depth by Memory Load Configuration (bpp)											
Single	Dis	splay	Disp	olay +	Disp	olay +	Display +						
Display	C	Only	1/4	PAL	1 F	PAL	PAL	DVD					
"TFT, DSTN,"			Vie	deo	Vie	deo							
or CRT	TFT/		TFT/		TFT/		TFT/						
	CRT	DSTN	CRT	DSTN	CRT	DSTN	CRT	DSTN					
320 x 240	32	32	32	32	32	32	32	32					
640 x 480	32	32	32	32	32	32	8	8					
800 x 600	32	32	32	32	32	32	8						
1024 x 768	32	32	32	24	24	16							
1280 x 1024	24	16	16	16	8	8							
1600 x 1200	16	8	8	8	8	8							

Note: -- = mode not supported

B.2.3

$\rm MyView^{\rm TM}$ Dual display with NTSC Video

Size Color Depth					By Memory Load Configuration (bpp)								
First	Second	Disp	olays	Disp	lays +	Disp	Displays + Displays		lays +	Displays +		Displays +	
Display	Display	Or	nly	1/4 1	VTSC	1 N	TSC	1+1/4	NTSC	2 N	TSC	NTS	C DVD
TFT or	CRT			Vie	deo	Vi	deo	Vid	leos	Vic	leos		
DSTN		CRT	and	CRT	and	CR	r and	CRT	and	CRT	F and	CR	T and
		TFT [DSTN	TFT	DSTN	TFT	DSTN	TFT	DSTN	TFT	DSTN	TFT	DSTN
320 x 240	320 x 240	32	32	32	32	32	32	32	32	32	32	32	32
320 x 240	640 x 480	32	32	32	32	32	32	32	32	24	24	16	16
320 x 240	800 x 600	32	32	32	32	32	32	24	24	16	16	16	8
320 x 240	1024 x 768	32	32	24	24	24	24	16	16	8	8	8	8
320 x 240	1280 x 1024	16	16	16	16	8	8	8	8				
320 x 240	1600 x 1200	16	16	8	8	8	8						
640 x 480	320 x 240	32	32	32	32	32	32	32	32	24	24	16	16
640 x 480	640 x 480	32	32	32	32	32	32	24	24	16	16	8	8
640 x 480	800 x 600	32	32	32	32	24	24	16	16	8	8	8	8
640 x 480	1024 x 768	24	24	24	24	16	16	8	8	8	8	8	
640 x 480	1280 x 1024	16	16	16	16	8	8	8	8				
640 x 480	1600 x 1200	8	8	8	8	8	8						
800 x 600	320 x 240	32	32	32	32	32	32	24	24	16	16	16	8
800 x 600	640 x 480	32	32	32	32	24	24	16	16	8	8	8	8
800 x 600	800 x 600	32	32	24	24	16	16	16	8	8	8	8	8
800 x 600	1024 x 768	24	24	16	16	16	16	8	8	8			
800 x 600	1280 x 1024	16	16	8	8	8	8	8	8				
800 x 600	1600 x 1200	8	8	8	8	8	8						
1024 x 768	320 x 240	32	32	24	24	24	16	16	16	8	8	8	8
1024 x 768	640 x 480	24	24	24	16	16	16	8	8	8	8	8	
1024 x 768	800 x 600	24	24	16	16	16	8	8	8	8			
	1024 x 768	16	16	16	16	8	8	8	8				
1024 x 768	1280 x 1024	8	8	8	8	8	8						
	1600 x 1200	8	8	8	8								
1280 x 1024		16	16	16	16	8	8	8	8				
1280 x 1024		16	16	16	8	8	8	8	8				
1280 x 1024		16	16	8	8	8	8	8					
1280 x 1024		8	8	8	8	8	8						
	1280 x 1024	8	8	8	8	8							
1280 x 1024	1600 x 1200	8	8	8									

Note: -- = mode not supported

B.2.4

MyViewTM Dual display with PAL Video

Size Color Depth					ory	Load C	onfig	gurat	ion (bp	p)	
First	Second	Displays	Displays -	Display	/s +	Display	/s +	Disp	lays +	Displays +	
Display	Display	Only	1/4 PAL	1 PA	L	1+1/4 I	PAL	2	PAL	PAL	DVD
TFT or	CRT		Video	Video	0	Video	os	Vic	deos		
DSTN		CRT and	CRT and	CRT a	nd	CRT a	and	CR	T and	CR	T and
		TFT DSTN	TFT DST	N TFT D	STN	TFT D	STN	TFT	DSTN	TFT	DSTN
320 x 240	320 x 240	32 32	32 32	32	32	32	32	32	32	24	24
320 x 240	640 x 480	32 32	32 32	32 3	32	32	32	8	8	8	8
320 x 240	800 x 600	32 32	32 32	32 3	32	16	16	8	8		
320 x 240	1024 x 768	32 32	24 24	16	16	8	8				
320 x 240	1280 x 1024	16 16	16 16	8	8	8	8				
320 x 240	1600 x 1200		8 8		8						
640 x 480	320 x 240	32 32	32 32		32		24	8	8	8	8
640 x 480	640 x 480	32 32	32 32	24	24	16	16	8	8		
640 x 480	800 x 600	32 32	32 32	24	16	8	8				
640 x 480	1024 x 768	24 24	16 16	16	16	8	8				
640 x 480	1280 x 1024	16 16	8 8		8						
640 x 480	1600 x 1200		8 8		8						
800 x 600	320 x 240	32 32	32 32	32 3	32	16	16	8	8		
800 x 600	640 x 480	32 32	32 24		16	8	8				
800 x 600	800 x 600	32 32	24 24		16	8	8				
	1024 x 768	24 24	16 16		8	8	8				
	1280 x 1024		8 8	8	8						
	1600 x 1200		8 8								
1024 x 768	320 x 240	32 32	24 24		16	8	8				
1024 x 768	640 x 480	24 24	16 16		16	8	8				
1024 x 768	800 x 600	24 24	16 16		8	8	8				
1024 x 768		16 16	16 8		8						
	1280 x 1024		8 8	8	8						
	1600 x 1200		8 8								
1280 x 1024		16 16	16 16	8	8	8					
1280 x 1024		16 16	8 8		8						
1280 x 1024		16 16	8 8		8						
1280 x 1024		8 8	8 8	8	8						
	1280 x 1024		8 8								
1280 x 1024	1600 x 1200	8 8									

Note: -- = mode not supported

C Appendix C

C.1 References

Advanced Configuration and Power Interface Specifications Intel, Microsoft and Toshiba, Revision 1.0.

Advanced Graphics Port (AGP) Interface Specifications Intel, Revision 2.0.

AMD K6-III Processor Data Sheet AMD, Feb. 1999.

Display Power Management Signaling (DPMS) Standard Video Electronic Standards Association, version 2.0

Ferraro, Richard F. - Programmer's Guide to the EGA and VGA Cards Addison-Wesley, third edition, 1995.

Foley, J.D. and Van Dam, A. - Fundamentals of Interactive Computer Graphics Addison-Wesley, 1992.

International Radio Consultative Comittee, Recommendation ITU-R BT601 (formerly Recommendation CCIR601)

Jack, Keith - Video Demystified High Text Publications, Inc., 1996.

Kliewer, Bradley Dyck. - EGA/VGA - A Programmer's Reference Guide McGraw-Hill, second edition, 1990.

PC Card Standard Personal Computer Memory Card International Association, vol. 2, 1997

PCI Local Bus Specification PCI Special Interest Group, Revision 2.2.

SAA7111A Enhanced Video Input Processor Product Specification, Philips Semiconductors, May 15, 1998

VESA BIOS Extensions (VBE) Core Functions Video Electronic Standards Association, Revision 2.0.

VESA DDC Standard version 1.0 Video Electronic Standards Association, Revision 0.

