
Programmer’s ReferenceSi l icon
 M A G I C
6 Programmer’s Reference
SM3110 Technical Reference Manual 6-1

Programmer’s Reference Si l icon
 M A G I C
6.1 Overview

This section of the Technical Reference Manual provides information of particular interest to pro-
grammers of the SM3110 graphics chip.

A key component of programming for the SM3110 is the ability to access all of the registers, FIFO
and data areas of the graphics hardware and memory regions. This section begins with by detail-
ing the addressing spaces and access modes of the SM3110.

Following the address space introduction are the subsections describing the setup and use of the
graphics chip itself. The topics presented are arranged from initialization by the BIOS and driver,
through the 2D and 3D functions. Then the remaining capabilities of the device are described.
Finally, some equates and macros are defined that make the coding easier.

6.2 Address Mapping

Programming for the SM3110 requires access to four(4) address spaces:

(1) VGA addresses for direct I/O port access at 3CxH, 3BxH, 3DxH
(2) VGA addresses for VGA frame buffer access at A0000H (128KB);
 (larger memory for Super VGA frame buffer data is made accessible
 via an I/O addressed bank/offset register)
(3) PCI configuration space (256B)
(4) SM3110 “Local Memory” addresses, encompassing all the embedded
 memory and memory-mapped registers (128MB)

In addition to having their standard addresses, address spaces (1) and (3) have memory-mapped
addresses within the SM3110 Local Memory range.
6-2 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.2.1 Local Memory Address Space

The term “local memory” refers to the 32MB linear address space within which the SM3110 maps
all of its available embedded memory, as well as its internal registers and memory-mappings of
VGA and PCI registers. In order to support all variations of little-endian/big-endian and word/dou-
ble word byte-swapping architectures, the SM3110 requires a total address space of 128MB (out
of the 4GB available) address space. The four(4) individual 32MB address spaces are multiply-
mapped to the one 32MB local memory area required. This is shown in Figure 6-1.

Figure 6-1. SM3110 Address Space Allocation

Reserved or
Uninstalled

00000000H 0000000H

Address
Space (4GB)

PCI

xx000000H

Local
Memory
(32MB)

2000000H

4000000H

6000000H

7FFFFFFHFFFFFFFFH

0000000H

0400000H

1FC0000H

1FFFFFFH

Address
Space

(128MB)

256KB
Memory-
mapped

Resource

4MB
Embedded

Memory
System
Memory

128 MB
Aperture
(SM3110
Address
Space)

32 MB
Big-endian

(word-
swap)

32 MB
Big-endian

(Dword-
swap)

32 MB
Local

Memory
SM3110 Technical Reference Manual 6-3

Programmer’s Reference Si l icon
 M A G I C
Table 6-1. Local Memory Space Allocation

Also shown in Figure 6-1 is a further division of the 32MB local memory addresses into two areas:

(1) 256KB at the top of the address range, for memory-mapping SM3110 and
 other system resources
(2) 31.75MB at the bottom of the address range, for addressing the SM3110
 display memory (of which of 4MB is used for embedded memory on the SM3110)

The embedded 4MB display memory is dynamically partitioned by the software to provide data
buffers, frame buffers, FIFO’s, etc. These divisions and areas are discussed later in this section.

Little Endian Little Endian
(Reserved)

Big Endian
(Dword Swap)

Big Endian
(word Swap)

Range Size Base Base Base Base
Display Memory 31.75MB 00000000H 02000000H 04000000H 06000000H
Memory-mapped
Resources

 0.25MB 01FC0000H 03FC0000H 05FC0000H 07FC0000H

Total 32.00MB
6-4 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.2.2 Memory-Mapped Resources Address Space

The 256KB region (at the top of local memory) for memory-mapped resources is further divided
into four areas:

(1) Control addresses (64KB)
(2) Peripheral I/O addresses (64KB)
(3) Reserved (64KB)
(4) Embedded memory configuration registers

as shown in Figure 6-2.

Figure 6-2. Memory-mapped Resources

Memory-
mapped

Resource
(256KB)

1FC0000H

1FD0000H

1FFFFFFH

64KB
Control

Registers

64KB
Peripheral

I/O
Registers

64KB
Embedded

Memory
Configuration

Registers

Local
Memory
(32MB)

0000000H

0400000H

1FC0000H

1FFFFFFH
256KB

Memory-
mapped

Resource

4MB
Embedded

Memory

Reserved or
Uninstalled

1FF0000H

1FE0000H
SM3110 Technical Reference Manual 6-5

Programmer’s Reference Si l icon
 M A G I C
6.2.3 Control Address Space Memory Mapping

The 64KB Control Address space is divided into five regions as shown in Figure 6-3. Each of
these regions is discussed briefly in the following sections. The registers which access these
regions are defined in Section 4, Register Summary.

Figure 6-3. Control Address Space

2D Commands and
Parameters FIFO (4KB)

2D Image Data FIFO
(16KB)

Reserved or
Uninstalled

Control
Registers

(64KB)

1 FFFFFF H

1 FF10 00 H

1 FF20 00 H

1 FF30 00 H

1 FF40 00 H

1 FF80 00 H

1 FF90 00 H

1FF C000 H

1 FF00 00 H

1 FF5000 H

2D Control Register
(Display 0) (4KB)

2D Control Register
(Display 1) (4KB)

3D Control Register
(4KB)

3D Command F IFO
(4KB)
6-6 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.2.3.1 2D Control Registers (Display 0/Display 1)

The 2D control registers occupy two 4KB (8KB total) memory-mapped address spaces. Registers
that are common to both Display 0 and Display 1 are at the same offset within their respective 4KB
address spaces. The layout of this region is shown in Figure 6-4 and described in detail in Section
4, Register Summary.

.

Figure 6-4. 2D Control Register Space

PCI Config+F00H

LCD Timing CRT Timing+E00H

LCD Control CRT Control+D00H

Buffer Descriptors+C00H

Channel Descriptors+B00H

Surface Descriptors+A00H

Ext Mem Control+900H

2D Engine+800H

LCD Panel Control+500H

Peripheral I/O+400H

Host Bus Master+200H

Status/Control Status/Control+000H

+0xxxH +1xxxH
SM3110 Technical Reference Manual 6-7

Programmer’s Reference Si l icon
 M A G I C
6.2.3.2 3D Control Registers

The 3D control registers occupy a 4KB memory-mapped address space. The layout of this region
is shown in Figure 6-5 and described in detail in Section 4, Register Summary.

Figure 6-5. 3D Control Register Space

Access to 3D state registers is provided through a 4KB memory-mapped address space. Each
register is directly accessible (via PCI) with byte granularity. State registers loaded via the com-
mand/parameter stream are, however, only writable with a granularity of 16 bits, i.e., all bits within
the 16-bit word are modified. For this reason, control fields are grouped so that fields that are typ-
ically modified together are located in the same or nearby words. For PCI access, data must be
correctly byte-aligned. These registers can be read and written directly for diagnostic and debug
purposes.

+000H

+400H

+800H

+C00H

+600H

+040H

+080H

+0C0H

Palette

Stipple

Command
Decode

Edge
Walking

Triangle
Setup

Texture
Mapping DMA

Memory
Interface

Per
Fragment
Z-buffer

Unit

Vertex

Edge List

Level of
Detail

Temp

+100H +200H

Internal

Arrays

State

Registers
6-8 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.2.3.3 3D Command/Parameter FIFO

A 4KB input (write-only) FIFO port is reserved for command and parameter transfers from the host
to the 3D rendering engine. All accesses to anywhere in the window will be written to the location
pointed to by the FIFO write pointer. The actual memory region reserved for the FIFO is config-
urable in 16KB increments up to 1MB on 16KB boundaries. It can be located at any addressable
memory region within the 32MB local address space (see 3D Command FIFO)

6.2.3.4 2D Command/Parameter FIFO

A 4KB input (write-only) FIFO port is reserved for command and parameter transfers from the host
to the 2D rendering engine. All accesses to anywhere in the window will be written to the location
pointed to by the FIFO write pointer. The actual memory region reserved for the FIFO can be con-
figurable to 1KB, 8KB, 16KB, or 32KB in size. It can be located at any addressable memory region
addressable within the 32MB local address space.

6.2.3.5 2D Image Data FIFO

A 16KB input (write-only) FIFO port is reserved for 2D image data transfers from the host. All
accesses to anywhere in the window will be written to the location pointed to by the FIFO write
pointer. The actual memory region reserved for the FIFO can be configurable to 1KB, 8KB, 16KB,
or 32KB in size. It can be located at any addressable memory region within the 32MB local
address space.
SM3110 Technical Reference Manual 6-9

Programmer’s Reference Si l icon
 M A G I C
6.2.4 Display Memory Arrays

The following arrays are located in display (internal/embedded DRAM) memory:

6.2.4.1 Surfaces

All 2D operations operate on surfaces defined by surface descriptor registers that specify the
base, stride and pixel format of the specific array.

6.2.4.2 Texture Memory

Texture memory consists of multiple bitmaps containing different views of textures to be applied to
objects. A base and end register in increments of 4KB define the region that may be used for tex-
ture memory.

6.2.4.3 Z-Buffers

The Z-buffer is typically a 16-bit bitmap the same size as the front and back buffers. It is initialized
to a constant value representing the largest (farthest) position from the viewer. It is accessed
sequentially in short horizontal spans just prior to rendering the span. If the Z value of the pixel
being rendered is less than the stored Z value, the pixel is in front of the previously rendered pixel
and it is written to the back buffer. The Z-buffer is then updated with the new Z value. The most
frequent Z-buffer accesses are short sequential reads followed by short sequential writes (masked
by the byte enable).

6.2.4.4 Memory Buffer Allocation

Memory for textures, draw and Z-buffer are stored within the same logical address space. The
entire address space, however, need not be contiguous, i.e., it may be composed of several differ-
ent regions.

The following restrictions apply to the allocation of buffers:

• The command/parameter/data FIFO must be in display memory. This buffer’s size is pro-
grammable up to one megabyte.

• The Z-buffer must be contiguous.
• Each of the front and back buffers must be contiguous within a region.
• Textures must be in display memory.
6-10 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.2.5 Byte Ordering

As previously discussed, the SM3110 supports both little- and big-endian accesses to the entire
linear address space, determined by the most significant address bit ([26]). In big-endian mode,
two different byte orders are supported, selected by the 2nd most significant bit ([25]) of the
address. Because both data registers and memory-mapped enhanced control registers are
accessible in this linear address space, it is possible to access both memory and registers in either
byte ordering by using different addresses, even on an individual doubleword basis.

Table 6-2. Byte Order Selection

Figure 6-5. Byte Ordering

A[26:25] Endian Swapping Processor
00 little endian Bytes within DWORDs x86, Alpha
01 Reserved
10 big endian Bytes within DWORDs PowerPC: 8, 32bpp
11 big endian Bytes within WORDs PowerPC: 16bpp

Big Endian - Byte Swap within Words

Big Endian - Byte Swap within Double Words

Little Endian

Byte 0Byte 1Byte 2Byte 3
31 00

Byte 0Byte 1Byte 2Byte 3
31 00

Byte 0Byte 1Byte 2Byte 3
31 00

Byte 4

Byte 4

Byte 0Byte 1Byte 2Byte 3
31 00

PCI Byte 0Byte 1Byte 2Byte 3
31 00

PCI

Byte 0Byte 1Byte 2Byte 3
31 00

Register

Byte 0Byte 1Byte 2Byte 3
31 00

Register

Byte 0Byte 1Byte 2Byte 3
31 00

PCIByte 0Byte 1Byte 2Byte 3
31 00

PCI

Byte 0Byte 1Byte 2Byte 3
31 00

PCI

Byte 0Byte 1Byte 2Byte 3
31 00

Register

Byte 0Byte 1Byte 2Byte 3
31 00

PCI

Memory

Memory

Memory
SM3110 Technical Reference Manual 6-11

Programmer’s Reference Si l icon
 M A G I C
6.3 BIOS Functions

VGA BIOS (Basic Input and Output Service) provides many low level services to higher level pro-
grams. The interface is defined by IBM and VESA committee. Section 5, BIOS Specification, of
this document describes in detail all the supported functions. It also defines all the modes sup-
ported by the SM3110. This section describes how the BIOS programs the SM3110 in order to
achieve those tasks defined in the BIOS Specification.

Among all the services provided by the BIOS, the two most important are initialization and mode
setting. The following sections describe the exact sequence the BIOS performs to achieve these
two tasks.

6.3.1 BIOS Initialization: Power-On Self Test (POST)

Prior to using any of the functions of the SM3110, several initialization steps are required. These
actions are performed as part of the Power-On Self Test (POST) of the BIOS.

POST will be executed during cold boot or warm boot. During cold boot, a hardware-reset signal
connected to the chip will be toggled, followed by a call into POST. For warm boot (when the user
hits Crtl-Alt-Del), POST is the only function that gets called. Therefore, POST has the responsibil-
ity to initialize the chip back to its reset state. The pseudocode below shows how the BIOS initial-
izes the hardware during the POST function.

0x3C3 ? 1 // Turn on video sub-system

0x3CE _ 0x80 // Max locking register
0x3CF _ 0x53 // ‘S’ – first unlock code
0x3CF _ 0x4D // ‘M’ – second unlock code, unlock

extended registers

Program 0x80 to 0x82 // Memory clock

// Initialize following registers
0xF1 _ 0 // Disable all interrupts
0x2F1 _ 0 // Disable host DMA interrupt
0x224 _ 0 // Clear host DMA count
0x8F1 _ 0x80 // Reset 2D engine
0x910 _ 0x37 // Internal refresh rate divide ratio
0xDF5 _ 0 // Disable double scan for display 0
0x1DF5_ 0 // Disable double scan for display 1
0xDF7 _ 0 // Set DAC 0 to normal
0x1DF7 _ 0 // Set DAC 1 to normal
0xDF4 _ 0 // Disable ECRT 0 – set to VGA
0x1DF4 _ 0 // Disable ECRT 1
0xD00 _ 0 // Disable cursor channel 0
0x1D00 _ 0 // Disable cursor channel 1
0xD10 _ 0 // Disable icon channel
0xD20 _ 0 // Disable scaler channel 0
0x1D20 _ 0 // Disable scaler channel 1
0xD30 _ 0 // Disable display channel 0
0x1D30 _ 0 // Disable display channel 1
6-12 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
0xCF0_ 0 // Disable deferred control 0
0xCF4 _ 0 // Disable deferred control 1
0xF04 _ 7 // PCI command register

// Initialize LCD registers
Disable stretching – 0x504
Power management Control – 0x508
LCD type and misc. – 0x 510
Dithering and frame rate modulation – 0x514
DSTN starting address – 520

Call set mode routine to set to mode 3

Detect CRT // Check whether monitor is attached

Turn on 0x3C4 index 1 bit 5 // Turn off screen

Memory test // Also detect memory size

Test DAC

Exit
SM3110 Technical Reference Manual 6-13

Programmer’s Reference Si l icon
 M A G I C
6.3.2 Set Mode

After POST, setting mode becomes the most essential portion of BIOS. Its responsibility is to set
the hardware to a known working state. The pseudocode below shows how the BIOS handles this
function.

0xDF4 _ 0 // Turn off ECRTC, enable VGA CRTC
0xDF7 _ 0 // Set DAC to normal
3C4.1 bit 5 _ 1 // Turn off screen
If(Standard VGA Mode)
{

Set standard VGA registers – 3C4/5, 3D4/5, 3C0/1, 3CE/F, etc. according to
the mode

}
Program 3C8, 3C9 // Initialize palette if necessary

// Reset following registers
0xD00 _ 0 // Disable cursor channel 0
0xD10 _ 0 // Disable icon channel
0xD20 _ 0 // Disable scaler channel 0
0xD30 _ 0 // Disable display channel 0
0x8F1 _ 0x80 // Reset 2D engine
If(Set to enhanced mode)
{

// Program following registers
0xB34 _ 4 // Set display 0 channel to surface 4
0xB30 _ 0 // Surface offset for display 0 channel
0xE30 _ 0 // Display 0 view port start
0xA40 _ 0 // Surface 4 base address
0xD80 _ 1 // scaler and display priority
0xD90 _ 0 // Disable color key
0xDF8 _ 0 // Clear display FIFO status
0xCF0 _ 0 // Disable deferred 0
0xCF4 _ 0 // Disable deferred 1
0xEE0 _ 0 // Display 0 sync selector

Program E80 – E94 // Timing parameters for ECRTC 0
Program 0xE34 // View port end
Program 0xA44 // Surface 4 stride and format
Program 0xD30 // Display 0 format
Program 0xDF5 // Double scan control
0xDF4 _ 5 // Turn on ECRTC
}
Program 0x90, 0x91, 0x92 // Dot clock

Clear screen if needed

0x3C4.1 bit 5 _ 0 // Turn on screen

Exit
6-14 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4 Driver Functions

The lowest-level driver for the SM3110 is responsible for these functions:

• device detection
• configuration
• memory-mapped control addressing
• memory address allocation
• physical buffers for FIFO’s
• linear/segmented mode
• cursor control
• icon programming

Each of these topics is presented in this section.

6.4.1 Device detection
This PCI interrupt routine is called to detect the SM3110 as a PCI/AGP device:

Sample code : Sense presence of SM3110

SenseHardware proc near
mov si, 0 ; Search from 0

SH_FindPCIDevice:
mov cx, DEVICEID ; =4831h,Device ID for SM3110 board
mov dx, VENDORID ; =8888h,Vendor ID for Silicon Magic
mov ax, 0B102h ; Find device command
int 1Ah ; PCI interrupt
jnc SH_Found ; Found

cmp ah, 86h ; Error code in ah - not found
je SH_NotSiMagic ; Search all slots and not found

SH_FindNextSlot:
inc si ; Search next slot
cmp si,256
jb SH_FindPCIDevice

SH_NotSiMagic ; Search all slots and not found
xor ax,ax ; means fail
ret

SH_Found:
mov wPCIBusAddress, bx ; bx=bus/device number, save in global
mov ax, 1 ; means successful
ret

SenseHardware endp
SM3110 Technical Reference Manual 6-15

Programmer’s Reference Si l icon
 M A G I C
6.4.2 Device configuration
Once the SM3110 device is detected, the following routine is used to read the PCI/AGP configura-
tion registers.

Sample code : Read PCI/AGP Configuration register

ReadPCIDword proc near
;;Entry: ax=index
;;Return: eax=double word be read

mov bx, wPCIBusAddress ; get from SenseHardware sub-routine
mov di, ax ; index
mov ax, 0B10Ah ; AH:PCI function ID,AL:Read a dword
int 1Ah ; PCI interrupt, return in ECX
mov eax,ecx ; return in EAX
ret

ReadPCIDword endp
6-16 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.3 Memory-mapped control address
The last 64KB of the local memory address space is reserved for memory-mapped 2D/3D control
registers.

6.4.3.1 Enable/Disable access

To prevent inadvertent access to the enhanced memory-mapped control registers, a specific
sequence must be written through the VGA Graphics Controller index/data port to enable access.

Sample code : Enable/Disable memory-mapped control register access

EnableIOMap proc near
mov dx,3ceh
mov ax,5380h ;write S into reg 80h
out dx,ax
mov ax,4D80h ;write M into reg 80h
out dx,ax
ret

EnableIOMap endp

DisableIOMap proc near
mov dx,3ceh
mov ax,5280h ;write L into reg 80h
out dx,ax
ret

DisableIOMap endp

Since PCI devices will be allocated with different memory addresses, the enable code is pro-
grammed just once for insurance, and the disable code should never be used.
SM3110 Technical Reference Manual 6-17

Programmer’s Reference Si l icon
 M A G I C
6.4.3.2 2D Command Port selector

Use the same way as above to set a variable to the base address of the memory-mapped control
register region. This is also the base address of the 2D control region.

Sample code : Get the 2D command port selector

GetPointer_MemoryMapCtl proc near
call GetLocalMemoryBase
mov eax, PhyVRAMAddress
add eax, 1FF0000 ;32M-64K
mov PhyCmdPortAddress,eax ;save as global
mov edx, 10000h ;size=64K
call GetSelector
mov CmdPortSelector, ax ;save as global variable
ret

GetPointer_MemoryMapCtl endp

After calling GetPointer_MemoryMapCtl routine during initialization, the following macros can
be used to read/write memory-mapped control registers at any offset.

ReadMemoryMapCtl Macro offset,data
mov es, CmdPortSelector
mov di,offset
mov data,es:[di]
Endm

WriteMemoryMapCtl Macro offset,data
mov es, CmdPortSelector
mov di,offset
mov es:[di], data
Endm
6-18 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.3.3 2D Image Data Port selector

The 2D Image Data FIFO is located at C000H from the memory mapped control address. Instead
of using the 2D Command port selector with offset C000H, it is easier to understand allocating
another global variable (selector) to address the area directly.

Sample code : Get the 2D image data FIFO port selector

GetPointer_ImagePort proc near
mov eax, PhyCmdPortAddress
add eax, 0C000h ;last 16K of command port
mov edx, 4000h ;size=16K

call GetSelector
mov ImagePortSelector, ax ;save as global variable
ret

GetPointer_ImagePort endp

After calling GetPointer_ImagePort routine at initialization period, the following macros can be
used to write data to 2D image data FIFO.

WriteImagePort Macro offset,data
mov es, ImagePortSelector
mov di,offset
mov es:[di],data
endm

6.4.3.4 VGA I/O Ports

Program the VGA I/O port (3Cxh, 3Bxh or 3Dxh) by writing index/data pairs.

Sample Code : Program VGA I/O port

VGAIOport proc near
mov dx, port ; 3Cxh, 3Bxh or 3Dxh
mov al, index
out dx, al
inc dx
mov al, data
out dx, al
ret

VGAIOport endp
SM3110 Technical Reference Manual 6-19

Programmer’s Reference Si l icon
 M A G I C
6.4.3.5 A0000H-based 128K VGA memory

For 16-bit real mode, use A0000H as the segment. A0000H:0 points to screen at (0,0) and
A0000H:C30H points to pixel at (48,3) for 1024x768x256colors mode.

For 16-bit protected mode, allocate a selector, set its base to A0000H and set its limit to dwVRAM-
Size. Then use the selector:offset pair to access video memory (see also the following section,
Local Memory Address Space).

6.4.3.6 PCI configuration space

In addition to calling subroutine ReadPCIDword , the PCI configuration register can also be
accessed from the offset 0F00H to the memory-mapped control selector. For example,

mov ax,30h
call ReadPCIDword ;return in eax

has the same effect as

mov fs, CmdPortSelector
mov eax, fs:[0F30h]
6-20 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.4 Memory Address Allocation

Section 6.2 described the address space of the SM3110 and all of its subdivisions. This section
describes how each of these is accessed by software.

6.4.4.1 Local memory address space

The SM3110 Address Space occupies four contiguous 32MB address ranges (of the total 4GB
PCI address space). The Local Memory Address Space is the lower 32MB of the 128MB range.
The PCI address of the local memory address space is located in the BASE 0 index of the PCI
configuration register. Use the following routine to get this physical address.

Sample code : Get the physical address of the base of local memory.

GetLocalMemoryBase proc near
mov ax, 10h ;Base 0 physical address index
call ReadPCIDword
and eax,0FF000000h ;align
mov PhyVRAMAddress,eax ;save in global,will be used later
ret

GetLocalMemoryBase endp
SM3110 Technical Reference Manual 6-21

Programmer’s Reference Si l icon
 M A G I C
6.4.4.2 Display (video) memory address

The display (video) memory starts from the beginning of the local memory address, with a physical
memory size which can be set in a global varialble by the following routine.

Sample code : Get display memory size

GetVideoMemSize proc near
xor eax,eax
mov dx,3ceh
mov al,8fh ;BIOS save bank size during POST
out dx,al
inc dx
in al,dx ;al has size in 64k units
shl eax,16 ;size in eax
mov dwVRAMSize,eax ;save in global, will be used later
ret

GetVideoMemSize endp

To access the local memory, the physical address needs to be converted to a linear/logical
address:

Sample code : Convert Physical to Linear Address

ConvertPhysicalToLinearAddress proc near
;;Entry: eax=physical address, edx=size
;;Return: eax=linear address

shld ebx,eax,16
mov cx,ax ;BX:CX has base physical address
mov edi,edx
dec edi
shld esi,edi,16 ;SI:DI has limit
mov ax,0800h ;convert physical to linear address.
Int 31h ;DOS Protected Mode Interface (DPMI)

call, return BX:CX = linear address
shrd eax,ebx,16
mov ax,cx ;eax= linear address
ret

ConvertPhysicalToLinearAddress endp

For 16-bit programs, data is pointed to by segment:offset pair (in real mode) or by selector:offset
pair (in protected mode).
6-22 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.4.3 16-bit Real Mode Addressing

In 16-bit real mode (i.e., DOS environment), data is pointed to by segment:offset pair. For exam-
ple, to access memory at B8004h, program as follows:

Sample code : Read/Write data to segment:offset in 16-bit real mode

mov ax,0B000h ;segment or B800h
mov es, ax
mov di, 8004h ;offset or 4h

Then use es:[di] to read/write data.

6.4.4.4 16-bit Protected Mode Addressing

In 16-bit protected mode (i.e., Microsoft Windows environment), data is pointed to by selector:off-
set pair. The segment needs to be converted to a selector by DOS Protected Mode Interface
(DPMI) calls.

Sample code : Get a selector in 16-bit protected mode

GetSelector proc near
;; Entry: eax= dwPhysAddr, edx=dwSize
;; Return: ax=selector assigned

mov dwSize, edx ;save in stack or global variable
mov dwPhysAddr,eax ;save in stack or global variable

xor ax,ax
mov cx,1 ;count
int 31h ;DPMI, allocate an LDT selector in ax
mov wSelecotr,ax ;save selector in stack or global variable

mov eax, dwPhysAddr
mov edx, dwSize
call ConvertPhysicalToLinearAddress ;return eax=linear addr

shld ecx,eax,16
mov dx,ax ;CX:DX = linear address
mov bx,wSelector ;BX=selector
mov ax,7
int 31h ;DPMI, set selector base.

mov edx,dwSize
dec edx
shld ecx,edx,16 ;CX:DX = limit
mov ax,8
int 31h ;DPMI, set selector limit

mov ax, wSelector ;return value in ax
ret

GetSelector endp
SM3110 Technical Reference Manual 6-23

Programmer’s Reference Si l icon
 M A G I C
6.4.4.5 32-bit Mode Addressing

For 32-bit code, since all memory is within the 4GB logical space, the linear address points to the
proper location of the memory.

By combining with 16-bit protected code, use the following routine to get display (video) memory
pointer:

Sample code : Get the Video Memory pointer

GetPointer_VideoMemory proc near
call GetLocalMemoryBase
call GetVideoMemSize
mov eax, PhyVRAMAddress
mov edx, dwVRAMSize

ifdef USE_32BIT
call ConvertPhysicalToLinearAddress
mov dwVRAMLinearAddress,eax ;save as global variable

else ;;USE_16BIT protected mode
call GetSelector
mov wVRAMSelector,ax ;save as global variable

endif
ret

GetPointer_VideoMemory endp
6-24 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
After calling the GetPointer_VideoMemory routine at initialization time, the following macros
can be used to read/write display (video) memory:

Sample code : Read/Write Video Memory

Ifdef USE_32BIT

ReadVideoMemory Macro offset,data
mov edi, dwLinearAddress_VideoMemory
add edi,offset
mov data,[edi]
Endm

WriteVideoMemory Macro offset,data
mov edi, dwLinearAddress_VideoMemory
add edi,offset
mov [edi],data
Endm

Else ;;USE_16BIT protected mode

ReadVideoMemory Macro offset,data
mov es, wVRAMSelector
mov di,offset
mov data,es:[di]
Endm

WriteVideoMemory Macro offset,data
mov es, wVRAMSelector
mov di,offset
mov es:[di],data
Endm

Endif

Note : For simplicity, only 16-bit protected mode code will be used for the remainder of this docu-
ment.
SM3110 Technical Reference Manual 6-25

Programmer’s Reference Si l icon
 M A G I C
6.4.5 Physical Buffers for FIFOs
When programming or addressing data in the 3D command, 2D command and 2D image data
FIFO areas, the SM3110 chip hardware will first decode the address and transfer data to the phys-
ically allocated buffer and then execute the command or retrieve data in a FIFO order. These buff-
ers must be physically allocated somewhere in the 4MB display memory. By convention: use the
last 128KB for these buffers

• 3D command FIFO buffer: 64KB
• 2D image data FIFO buffer: 32KB
• 2D command FIFO buffer: 4KB
• Cursor Deferred control buffer: 1KB
• Display Deferred control buffer: 1KB
• Cursor buffer: 2KB
• Icon: 2KB
• others

For example, consider the 2D command FIFO. The 2D command FIFO can only be accessed
within a 4KB range: offsets +8000H to +9000H within the Control Address Space. However, the
SM3110 can actually access up to 32KB by using addresses in this range repeatedly. The follow-
ing code shows how this is done (in this example only 16KB is accessed).

Sample code : Set buffer locations for FIFOs

GetFIFOBufferLocation proc near
call GetLocalMemoryBase
call GetVideoMemSize
mov eax, PhyVRAMAddress
add eax, dwVRAMSize
sub eax, 20000h ;reserved last 128K for FIFO buffer
mov dwPrivatePhyAddr, eax;save as global
ret

GetFIFOBufferLocation endp

Please refer to “Equates” section. Here is code to set buffer addresses:

SetBufferBase_2DCmdFIFO proc near
call GetFIFOBufferLocation
add eax, CMDFIFO_OFFSET
or eax, ECMDFIFOSIZE
mov fs, CmdPortSelector
mov fs:[CMDBufferBaseAddress],eax
ret

SetBufferBase_2DCmdFIFO endp

SetBufferBase_2DImageFIFO proc near
call GetFIFOBufferLocation
add eax, IMGFIFO_OFFSET
or eax, EIMGFIFOSIZE
mov fs, CmdPortSelector
mov fs:[IMGBufferBaseAddress],eax
ret

SetBufferBase_2DImageFIFO endp
6-26 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.6 Linear/Segmented mode
Display memory can be configured as a large contiguous address space (linear mode) up to
32MB, or as multiple 64KB segments (segmented mode). For linear mode, it is easy to access the
memory by 32-bit linear pointer or selector:[32-bit offset]. Usually in 16-bit programs with 16-bit
offsets such as BX,SI or DI, the maximum value is 64KB. To access memory beyond 64KB
requires setting the memory bank.

Sample Code : Program VGA Memory bank

GetVGAMemoryBank proc near
mov dx, 3CEh
mov al, 84h ;bank offset register index
out dx, al
inc dx
in al, dx ;bit 6:1=bank in 64K unit
and ax,7Fh ;bit 7=1 for packed pixel mode banking mode
shr ax,1
ret ;return ax=bank #

GetVGAMemoryBank endp

SetVGAMemoryBank proc near ;ax=bank #
add al, al ;bit 6:1=bank in 64K unit
or al, 80h ;bit 7=1 for packed pixel mode banking mode
mov dx, 3CEh
mov ah, 84h ;bank offset register index
out dx, ax
ret

SetVGAMemoryBank endp

Thus, after programming

mov ax,1
call SetVGAMemoryBank

wVRAMSelector:[0] points to the pixel at (0,64) instead of (0,0) in 1024x768x256color mode. Obvi-
ously, accessing memory in linear mode is easier, simpler and recommended.
SM3110 Technical Reference Manual 6-27

Programmer’s Reference Si l icon
 M A G I C
6.4.7 Cursor control
The SM3110 supports both monochrome and color cursors. The cursors can be turned on and
off. The turning on and the positioning of the cursor can be synchronized with VBLANK.

6.4.7.1 Cursor Format

The monochrome cursor can be up to 256 x 256 pixels in size. It is defined as two 1-bit-per-pixel
(bpp) masks: the AND mask and the XOR mask. The cursor display logic is described below.

The color cursor can be up to 32 x 32 pixels. It is defined as a one-bit-per-pixel AND mask and a
16-bit-per-pixel color bitmap which is the XOR bitmap. The cursor display logic is described below.

AND Mask XOR Mask Result
0 0 Background Color (BLACK)
0 1 Foreground Color (WHITE)
1 0 Screen Pixel
1 1 NOT Screen Pixel

AND Mask XOR Bitmap Result
0 Cursor Pixel Cursor Pixel
1 Cursor Pixel Screen Pixel XOR Cursor Pixel
6-28 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.7.2 Cursor data buffer and surface

The cursor pattern is stored in the offscreen memory. Cursor buffer allocation is mentioned in
Section 6.4.5, Physical Buffers for FIFOs. A surface descriptor has the physical base address of
the cursor in the offscreen memory. This example shows how to prepare buffer before setting cur-
sor.

Sample code : Set buffer location for cursor and deferred control

;fs= CmdPortSelector: selector points to the register base address
SetBuffer_Cursor proc near

mov eax, dwPrivatePhyAddr ;get from GetFIFOBufferLocation
addeax, CURSOR_OFFSET
sub eax, PhyVRAMAddress ;relative to local memory base
mov dwCursorBufferOffset,eax offscreen to load the cursor pattern,

save as global
mov fs:[CURSOR0SURFACE],eax ;surface descriptor base
mov fs:[ChCurOffsets],0 ;offsets into cursor surface, maybe !=0

if clipped
mov fs:[ChCurSIndex],CURSOR0SURFACEINDEX ;set cursor surface

descriptor index
ret

SetBuffer_Cursor endp
SM3110 Technical Reference Manual 6-29

Programmer’s Reference Si l icon
 M A G I C
6.4.7.3 Set Monochrome Cursor data

For monochrome cursor, the cursor source (i.e., from Windows) is specified as two 1 BPP bitmaps,
the AND and XOR masks. SM3110 defines the cursor surface as 1 BPP format, and sets the
stride to 2 times the cursor width. These two masks are written to the cursor surface buffer as
interleaved words with the AND mask followed by the XOR mask.

Following example sets a monochrome cursor with size of 256 x 256 (the maximum possible size).
Note that the cursor surface stride is fixed at 256 pixels (2 BPP).

Sample code : Set Monochrome cursor

;fs= CmdPortSelector: selector points to the register base address
;ds:[esi] points to the cursor pattern, 512 bytes of AND mask followed by 512

bytes of XOR.

SetMonochromeCursor proc near
mov es, wVRAMSelector
mov edi, dwCursorBufferOffset ;es:[edi] points to the offscreen

to load the cursor pattern.

mov fs:[CursorFormat],CURSOROFF ;turn off cursor
mov gdwCursorFormat, CURSOR1 ;global variable to turn on cur-

sor later
mov eax,(256*2) ;stride*2 - only for mono cursor
or eax,BPP1 shl 20;surface is 1 BPP
mov fs:[CURSOR0SURFACE+4],eax ;set stride and format

mov ecx,64 ;count of rows to handle
loop_nextrow:

mov bx,4
loop_in1row:

mov ax,ds:[esi+512];load XOR mask
shl eax,16 ;transfer to high bits
loadw ;load AND mask ls 16 bits
stosd ;save AND & XOR masks in off

screen memory
dec bx
jnz loop_in1row
add edi,256*2/8 - 16 ;offset into next row
loop loop_nextrow
ret

SetMonochromeCursor endp

Note : The cursor is now set and needs to be turned on and positioned. The monochrome cursor
can be a maximum of 256 x 256 pixels. If the given cursor size is smaller, the cursor pattern is
loaded into the top left corner of the cursor surface and the viewport adjusted to display the cursor.
The CursorPositionStarts and CursorPositionEnds are set based on the cursor width and height;
the desired portion of the cursor surface is displayed.
6-30 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.7.4 Set Color Cursor data

For color cursor, the cursor source (i.e., from Windows) is specified as a 1 BPP AND mask and a
color bitmap which can be 8, 16 or 24 BPP. SM3110 defines the cursor surface as a 16 BPP for-
mat with the desired stride in pixel units. The color pixels and the AND mask are combined into
16-bit pixels with the most significant bit containing the AND mask and the remaining 15 bits con-
taining RGB value with a 5-5-5 format. The resulting 16-bit pixels are written into the cursor sur-
face.

The cursor size is 32x32 for this example, the maximum possible size for color cursors. Assume
the current mode is 16 BPP, RGB 5:6:5 mode. The given cursor definition has 128 bytes of mono-
chrome bitmap (the AND mask) and 2KB of color bitmap (the XOR component). The color cursor
surface stride has to be 32 pixels (16 BPP).

Sample code : Set Color cursor

;fs= CmdPortSelector: selector points to the register base address
;ds:[esi] points to the cursor pattern,128 bytes of AND mask followed by 2048

bytes of color bitmap.
SetColorCursor proc near

mov es, wVRAMSelector
mov edi, dwCursorBufferOffset ;es:[edi] points to the offscreen to

load the cursor pattern.

mov fs:[CursorFormat],CURSOROFF ;turn off cursor
mov gdwCursorFormat, CURSOR16 ;global variable to turn On cursor later
mov eax,32 ;stride
or eax,BPP16 shl 20 ;surface is 16 BPP
mov fs:[CURSOR0SURFACE+4],eax ;set stride and format

mov ecx,32*2 ;count of words to handle
mov ebx,128 ;init. offset to color bitmap

OLOOP:
mov ax,ds:[esi] ;load AND mask
rol eax,16 ;and mask in MS 16 bits
mov dx,16 ;inner loop count

@@:
mov ax,ds:[esi+ebx] ;load color component
rcr ax,6 ;convert 565 to 555, discard LS Green

bit
rol ax,5 ;prepare to load AND mask in MS bit
rcl eax,1 ;get AND mask bit into carry
rcr ax,1 ;rotate into MS bit with 555 color
add ebx,2 ;offset to next pixel of color bitmap
stosw ;store AND mask and color component into

offscreen
dec dx ;process 16 pixels
jnz @B
add esi,2 ;point to next word of AND mask
loop OLOOP
ret

SetColorCursor endp
SM3110 Technical Reference Manual 6-31

Programmer’s Reference Si l icon
 M A G I C
Note: The cursor is now set and needs to be turned on and positioned. The color cursor size can
be a maximum of 32 x 32 pixels. If the given cursor size is smaller, the cursor pattern is loaded
into the top left corner of the cursor bitmap and the viewport adjusted to display the cursor. The
CursorPositionStarts and CursorPositionEnds are set based on the cursor width and height; the
desired portion of the cursor surface is displayed. The 24 BPP, RGB 888 bitmaps are converted to
a 16-bit, 555 format by packing the most significant 5 bits of the red, green and blue components.
If the color depth is 8 BPP, the RGB values for each color index (pixel) are converted to an RGB
555 word. No conversion is necessary for 16-bit RGB 555 bitmaps.
6-32 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.4.7.5 Cursor Deferred control

To avoid the tearing or jumping of the cursor image, all writes to the cursor registers are recorded
into the Deferred Cursor Buffer and rewritten during VBLANK. The immediate register address,
with encoded byte enables followed by register data, is recorded. The immediate registers are
updated with the recorded data during VBLANK. Macros LDAB, LDAW and LDAD are used to
load the deferred offsets with encoded byte enables. These macros are defined in the “Equates”
section.

Sample code : Set buffer location for cursor and deferred control

;fs= CmdPortSelector: selector points to the register base address

SetBuffer_CursorDeferredCtl proc near
mov eax, dwPrivatePhyAddr ;get from GetFIFOBufferLocation
add eax, CURDEFERRED_OFFSET
sub eax, PhyVRAMAddress ;relative to local memory base
mov dwCurDeferBufferOffset,eax ;offscreen to load the cursor deferred

(addr,data) pairs
ret

SetBuffer_CursorDeferredCtl endp

Usually SM3110 uses the “Deferred control pointer 0” as the cursor deferred control pointers. To
use the deferred control, first check if the deferred control status is replaying. When idle, reset the
read pointer to the buffer allocated above, write the (command address, value) pairs to the buffer,
then update the write pointer to the address of the last pair. Finally, enable the replay bit in the sta-
tus register. During the next VBLANK period, the SM3110 will get the data from the deferred read
pointer and execute the ‘command’ with the following ‘value’. The read pointer will be automati-
cally updated by the hardware after the data was read. It will not stop until the read pointer
matches the write pointer. An example is shown in the next section of “Set Cursor Position”.
SM3110 Technical Reference Manual 6-33

Programmer’s Reference Si l icon
 M A G I C
6.4.7.6 Set Cursor Position and Turn Cursor On

The cursor has been previously turned off and a new cursor shape has been set. The cursor dis-
play and position parameters have to be set during VBLANK to avoid tearing or jumping of the cur-
sor. This is accomplished by writing to the Deferred buffer and enabling replay; and the real
register updates occur durring VBLANK. The cursor position can be set independently if the cur-
sor was already on.

The cursor position and display size can be controlled, along with offsets which enable partial cur-
sors to be displayed at the left and top edges of the screen. The cursor surface descriptor is set
up for the base address, format and stride. The (x,y) offsets are set along with the (x,y) position of
the top left corner of the cursor. The (x,y) offsets are set to (0,0) if the cursor is fully visible. Note
that the cursor position (x,y) can only be positive numbers. To enable partial cursor to be visible at
the left or top edges of the screen, the cursor position x or y is set to 0. The corresponding x or y
offset, the portion of the cursor not visible in pixel units, is set in the offset register. The cursor for-
mat has to be set for the display portion along with the extents.

Sample code : Set Cursor Position and Turn Cursor On

;fs= CmdPortSelector: selector points to the register base address
;Cursor height and width are assumed 32x32
;Deferred Control buffer in the offscreen memory, selector es points to the

screen base .
;variables gCursorX/Y is cursor location, gCursorHotX/Y is hot spot inside

cursor,
;variables ScreenWidth/Height is curren screen dimension.

MoveCursor proc near
;read Deferred control status - disarms Deferred control replay
@@:

mov al,fs:[CursorReplayStsReg] ;wait while replay active
test al,REPLAYACTIVE;
jnz @B ;skip to load cursor if inactive

mov edi, dwCurDeferBufferOffset ;physical buffer reserved for
deferred control

mov fs:[CursorReplayPtr],edi ;Reset replay pointer
mov es, wVRAMSelector ;es:[edi]=offscreen for deferred control

mov eax, gdwCursorFormat; CURSOR1/16
LDAD ebx,CursorFormat;
mov es:[edi],ebx ;record reg address and data into

deferred buffer
mov es:[edi+4],eax ;turn on mono or color cursor
add edi,8

;;clip cursor at Y axis
xor bx,bx ;assume cursor yoffset = 0
mov cx,32 ;assume extent = 32
mov ax,gCursorY ;ax = screen coordinate of cursor
sub ax,gCursorHotY ;correct for hot spot
jge clipcursorY_bottom ;Is adjusted coordinate negative?
add cx,ax ;yes, shorten extent
sub bx,ax ;advance yoffset
xor ax,ax ;set screen coordinate to zero.
Jmp clipcursorY_done
6-34 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
clipcursorY_bottom:
mov dx,ax ;dx = top of cursor
add dx,cx ;dx = bottom+1 of cursor
sub dx,ScreenHeight ;dx = # pixels cursor is clipped on bottom
jle clipcursorY_done ;If 0 or neg, cursor is completely visible
sub cx,dx ;adjust extent

clipcursorY_done:

shl eax,16 ;accumulate y position
shl ebx,16 ;offset
shl ecx,16 ;and y end in upper 16 bits

;;clip cursor at X axis
xor bx,bx ;assume cursor xoffset = 0
mov cx,32 ;assume extent = 32
mov ax,gCursorX ;ax = screen coordinate of cursor
sub ax,gCursorHotX ;correct for hot spot
jge clipcursorX_right ;Is adjusted coordinate negative?
add cx,ax ;yes, shorten extent
sub bx,ax ;advance xoffset
xor ax,ax ;set screen coordinate to zero.
Jmp clipcursorX_done

clipcursorX_right:
mov dx,ax ;dx = lhs of cursor
add dx,cx ;dx = rhs+1 of cursor
sub dx,ScreenWidth ;dx = # pixels cursor is clipped on right side
jle clipcursorX_done ;If 0 or neg, cursor is completely visible
sub cx,dx ;adjust extent

clipcursorX_done:
add ecx,eax;cx = (right,bottom)

;
mov es:[edi],edx ;record reg address and data into deferred

buffer
mov es:[edi+4],eax ; set cursor position top left x,y
add edi,8

LDAD edx,ChCurOffsets;
mov es:[edi],edx ;record reg address and data into deferred

buffer
mov es:[edi+4], ebx ;set cursor offsets
add edi,8

LDAD edx,CursorPositionEnds;
mov es:[edi],edx ;record reg address and data into deferred

buffer
mov es:[edi+4], ecx ;set bottom right position
add edi,8

sub edi,4 ;go back to the last valid address
mov fs:[CursorRecordPtr],edi ;set cursor write base pointer
mov fs:[CursorReplayCtlReg],ENABLEREPLAY ;Enable replay at next VBLANK
ret

MoveCursor endp

The cursor will be displayed at the next VBLANK.
SM3110 Technical Reference Manual 6-35

Programmer’s Reference Si l icon
 M A G I C
6.4.8 Icon
The SM3110 supports a hardware icon.

Sample code : Set icon buffer

;fs= CmdPortSelector: selector points to the register base address
SetBuffer_Icon proc near

mov eax, dwPrivatePhyAddr ;get from GetFIFOBufferLocation
addeax, ICON_OFFSET
sub eax, PhyVRAMAddress ;relative to local memory base
mov dwIconBufferOffset,eax ;offscreen to load the icon pattern,

save as global
mov fs:[ICONSURFACE],eax ;surface descriptor base
mov fs:[ChIconOffsets],0 ;offsets into icon surface
mov fs:[ChIconSIndex],ICONSURFACEINDEX ;set icon surface descrip-

tor index
ret

SetBuffer_Icon endp

Programming for the icon is similar to the cursor functions in the previous section. Follow those
routines to set Monochrome/Color Icon to the allocated icon buffer, set icon position and turn on
icon, except use “IconChFormat/IconChPositionStarts/ChIconOffsets/IconChPosi-
tionEnds ” instead of “CursorFormat /CursorPositionStarts/ChCurOffsets/Cursor-
PositionEnds ” respectively.
6-36 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5 2D Functions
6.5.1 Display Operations
The SM3110 controller provides a very powerful and flexible mechanism for defining surfaces and
displaying multiple surfaces via channels. Multiple surfaces can be displayed with alpha blending
and color keying.

The display memory can be logically viewed as surfaces. The surface descriptors define surfaces.
Each descriptor has the base address of the surface (in physical memory), the stride (in pixels)
and the pixel size (in bytes). Surface stride has to be a multiple of 16 pixels, and the base address
has to start on a 4-byte boundary. The SM3110 allows 16 descriptors, 00H through 0FH. The 2D
engine or the CPU can render into any surface. It is possible to perform inter-surface BitBLTs.
Surfaces are displayed by assigning them to one of seven(7) channels: two cursors, one icon, two
displays and two scalers. Surface descriptors 00 and 0Fh are reserved for cursor channels 0 and
1, descriptor 01h is reserved for the icon channel and descriptors 04h and 0Eh are reserved for
display channels 0 and 1 by BIOS and the display driver.

There are two sets of cursor/scaler/display: for output channel 0 and output channel 1. The cursor/
scaler/display set for output channel 0 is associated with the LCD output, and the cursor/scaler/
display set for output channel 1 is associated with the CRT. A surface can be attached to a display
channel. The attached surface is displayed on the screen through a viewport located at a speci-
fied position. The screen resolution is based on the mode currently set. The pixel format and size
have to be specified for each channel. The viewport location and its extents (size) can be speci-
fied. It is thus possible to display any portion of a surface on the viewport, clipped at the left and
top edges. The X,Y offsets become the origin into the surface bitmap that is displayed in the view-
port. With the X,Y offsets set to 0,0, the bitmap is displayed with the top left corner coincident with
the top left corner of the viewport. Figure 6-6 below shows an example of a surface being dis-
played by a display channel.

The icon channel is used to display ICON bitmap when LCD is powered down. The cursor channel
is provided for hardware cursor support which is described in the previous section. The surface
associated with the scaler channel can be of type RGB or YUV, and can be stretched or shrunk.
Only RGB surfaces can be attached to display channels. The scaler channel can be used as a
blend or as key control for the display channels. Certain modes can display only two channels due
to bandwidth and/or memory limitations.

By convention, when an enhanced mode is set, surface 4 is allocated by the BIOS to describe the
bitmap for that mode. This surface, the primary surface, is attached to a display channel. The
surface 0 is reserved for the cursor channel. The base addresses for the primary surface and the
cursor surface can be obtained from making extended BIOS calls. During mode setting, the cursor
and scaler channels are turned off by programming the channel format to 0. The channels can be
turned on later by programming with a legal format.

The surfaces attached to scaler and display channels can be displayed on the screen simulta-
neously. The overlay priority control register can specify the display order of the surfaces. The
scaler channel can be assigned an order as foreground for display, or as a background surface
which can be blended or colorkeyed with the foreground display channel. The blending can be
constant defined by the Mix control register. The keying can be on the source (foreground chan-
nel) or the destination (background channel). If source keying is selected, foreground channel pix-
els having the key color display pixels from the background channel; the foreground channel
SM3110 Technical Reference Manual 6-37

Programmer’s Reference Si l icon
 M A G I C
pixels not having the key color are displayed everywhere else. If destination keying is selected,
foreground channel pixels corresponding to key color pixels in the background channel are dis-
played. The background channel pixels are displayed everywhere else in the overlapping area. If
a control channel is specified for keying, it takes precedence over the key control registers. Figure
6-7 shows the overlay and mix control. In certain modes, it is possible to have only two channels
displayed due to memory and or bandwidth limitations.

Figure 6-6. Surface Definition

0

1

2

3

4

A

B

ChannelsSurface Descriptors

Desc.
Index

X,Y
offsets

Base
Address

Stride PEL
Format

PEL Size
(Enable)/

Extents
Cursor

Icon

Scaler

Display

DISPLAY
M E M O R Y

DISPLAY

Stride in pixels

LOGICAL BITMAP

Y Offset

X Offset

X Extent

Y Extent

X,Y Posit ion =0,0

Disable &
Format Scalar Ctl

 X,Y
Posit ion

NA

NA

NA
6-38 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Figure 6-7. Overlay Priority and Mixing

This section provides examples to perform common display operations. These are explained as
specific examples for clarity, but could be combined in real applications.

• Define surfaces.
• Channel controls - assign surface
• Channel controls - set location, size, scale factors etc.
• Enable/disable a channel.
• Set Overlay priority.
• Set Back/Fore Mix control (blend and overlay).
• Query the scanline being displayed.

In all the examples, the writes to the display control registers are deferred and written during
VBLANK. Writes to these registers are recorded into the Deferred Control Buffer and replayed
during VBLANK. The immedate register address with encoded byte-enables, followed by register
data, are recorded. Macros LDAB, LDAW and LDAD are used to load the deferred offsets with
encoded byte-enables (these macros are defined in Section 6.14.2, Macros). This eliminates the
undesirable tearing effects. A surface buffer attached to a channel can be swapped with a newly
rendered surface without visual artifacts. It is appropriate to modify the controls via the immediate
registers if the channel is disabled for display.

C H A N N E L

Cursor
0/1

Scaler
0/1

OVERLAY PRIORITY
C O N T R O L MIXER

To Display 0/1

Disp lay
0/1

Icon

Foreground/
Background

Order ing
SM3110 Technical Reference Manual 6-39

Programmer’s Reference Si l icon
 M A G I C
6.5.1.1 Define a Surface

This routine defines a surface given the base address, the bits per pixel and the stride in pixel
units. The base address should be on a doubleword boundary, and the stride should be a multiple
of 16-pixel units. The surface is uninitialized. Make sure that the surface entry being defined is
not already assigned to any surface.

Sample code : Define a Surface

;fs selector points to the register base address
;the variable bitspixel has the BPP with the stride in surfacestride. The sur-

face number is in surfacenum (0..F) and
surface

;base address is in the variable surfacebase.

DefineSurface proc near
mov ax,NEXTSURFACE ;calculate the surface
mul ax,surfacenum ;register address
mov bx,ax ;
mov eax,surfacebase ;load surface base address
mov fs:[bx+SurfaceBaseAddress],eax ;set base address for given

surface
mov ax,bitspixel ;load bits per pixel
shl eax,20 ;move to upper bits
mov ax,surfacestride ;load surface stride
mov fs:[bx+SurfaceStrideFormat],eax ;set stride and format
ret

DefineSurface endp

6.5.1.2 Channel Controls - assign surface

The given surface is assigned to the channel 0,1,2 or the control channel. In a typical operation,
one surface assigned to a channel is being displayed, and a second surface is being rendered into
or composed. The surfaces are then flipped to display the newly rendered surface. The surface
flip needs to occur during VBLANK to avoid undesirable screen artifacts. This is accomplished by
recording the writes to the Display Control registers into the Deferred Control Buffer and replaying
the register writes into the registers during VBLANK.

Sample code : Display Deferred control

;fs selector points to the register base address
;the variable surfacenum has the Surface descriptor index of surface to be
;attached. The variable channelnum has the channel
;number, one of (CHANNELCTL, CHANNEL0,CHANNEL1, CHANNEL2).
;Variable PhyCmdPortAddress has the immediate register physical base
;address, add offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred
;Control;buffer in the offscreen memory.
;gs selector points to the physical screen base.
6-40 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
DisplayDeferredControl proc near
mov edi,fs:[DisplayRecordPtr] ;load edi display write pointer

;read Display control status - disarms Deferred Display replay
mov al,fs:[DisplayReplayStsReg] ;read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE ;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS ;if replay pending

@@:
mov al,fs:[DisplayReplayStsReg] ;else wait while replay active
test al,REPLAYACTIVE ;
jnz @B ;skip to record writes if inactive
mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer

RECORDLOADS:

sub edi,PhyCmdPortAddress ;edi has offset into buffer
mov ax,NEXTCHANNEL ;calculate
mul ax,channelnum ;register address offset for

channel
movzxebx,ax ;in ebx
LDAB edx,ChannelIndex ;
add edx,ebx ;add to base
or edx,PhyCmdPortAddress ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov al,surfacenum ;load surface base number, dis-

played after next VBLANK
mov gs:[edi+4],al ;set surface number
add edi,(8-4) ;compute write pointer
add edi,PhyCmdPortAddress ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY;Enable replay at next VBLANK
ret

DisplayDeferredControl endp
SM3110 Technical Reference Manual 6-41

Programmer’s Reference Si l icon
 M A G I C
6.5.1.3 Channel Controls - Offsets & viewports location

The offsets, viewport location and the extents are set for a display channel. It is assumed that a
surface has been previously assigned to this channel and is being displayed. Setting the offsets
establishes the new origin into the surface being displayed. The viewport X,Y sets the location of
the top left corner of the display viewport, and the extents sets the width and height of the display
viewport. If the channel is being displayed, these parameters need to be set during VBLANK to
avoid undesirable screen artifacts. This is accomplished by recording the writes to the Display
Control registers into the Deferred Control Buffer and replaying the register writes during VBLANK.
A scaler channel can be set in a similar manner along with the location and extents. This controls
the stretch factor in the x and y directions.

Sample code : Channel control

;fs selector points to the register base address
;The variable channelnum has the channel number, one of (CHANNELCTL,
CHANNEL0,CHANNEL1, CHANNEL2).

;Variable PhyCmdPortAddress has the immediate register physical base address,
add offsets to yield register addresses

;displayreplaybase has the base address offset of Display Deferred Control
buffer in the offscreen memory.

;gs selector points to the physical screen base.
;Variables offsetx, offsety, viewx, viewy, and viewendx, viewendy contain the
offsets, viewport location starts and ends.

;The view location parameters are clipped to screen coordinates. The variable
sstride contains the stride of the surface

;sheight has the surface height.

ChannelControl proc near
mov edi,fs:[DisplayRecordPtr] ;load edi display write pointer

;read Display control status - disarms Deferred Display replay
mov al,fs:[DisplayReplayStsReg] ;read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE ;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS ;if replay pending

@@:
mov al,fs:[DisplayReplayStsReg] ;else wait while replay active
test al,REPLAYACTIVE ;
jnz @B ;skip to record writes if inactive

mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer

RECORDLOADS:
sub edi,PhyCmdPortAddress ; edi has offset into buffer
mov ax,NEXTCHANNEL ;calculate
mul ax,channelnum ;register address offset for channel
movzx ebx,ax ;
LDAD edx,ChViewPositionStarts ;load Channel View base
6-42 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
add edx,ebx ;offset into desired channel
or edx,PhyCmdPortAddress ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov ax,viewy ;load viewport x,y
shl eax,16 ;
mov ax,viewx ;
mov gs:[edi+4],eax ;set viewport x,y

LDAD edx,ChViewPositionEnds ;load Channel Extent Base
add edx,ebx ;offset into desired channel
or edx,PhyCmdPortAddress ;record reg address and data into

deferred buffer
mov gs:[edi+8],edx ;
mov ax,viewendy ;load x,y ends
shl eax,16 ;
mov ax,viewendx ;
mov gs:[edi+12],eax ;set x,y ends

LDAD edx,ChannelOffsets ;load Channel offset Base
add edx,ebx ;offset into desired channel
or edx,PhyCmdPortAddress ;record reg address and data into

deferred buffer
mov gs:[edi+16],edx ;
mov ax,offsety ;load x,y offsets into the surface

from top left corner
shl eax,16 ;
mov ax,offsetx ;
mov gs:[edi+20],eax ;set x,y offsets

if (Surface type YUV) {
LDAD edx,Ch0UOffsets ;load Channel U offsets
or edx,PhyCmdPortAddress ;record reg address and data into

deferred buffer
mov gs:[edi+24],edx ;
mov ax,offsety ;load U offsety = offsety/2+sheight
shr ax,1 ;
add ax,sheight ;
shl eax,16 ;
mov ax,offsetx ;U offsetx = offsetx/2
shr ax,1 ;
mov gs:[edi+28],eax ;set U offsets

LDAD edx,Ch0VOffsets ;load Channel V offsets
or edx,PhyCmdPortAddress ;record reg address and data into

deferred buffer
mov gs:[edi+32],edx ;
mov ax,offsety ;load V offsety = offsety/2+sheight
shr ax,1 ;
add ax,sheight ;
shl eax,16 ;
SM3110 Technical Reference Manual 6-43

Programmer’s Reference Si l icon
 M A G I C
mov ax,offsetx ;V offsetx = (offsetx+stride)/2
add ax,sstride ;
shr ax,1 ;
mov gs:[edi+36],eax ;set V offsets
add edi,(40-4) ;compute write pointer

} else {
add edi,(24-4) ;compute write pointer

}
add edi,PhyCmdPortAddress ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY ;Enable replay at next

VBLANK
ret

ChannelControl endp
6-44 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.1.4 Enable/Disable Channel Display

When a display channel is either enabled or disabled, the attached surface is either displayed or
turned off. The disabling can be effected immediately by writing to the immediate registers. The
enable needs to occur during VBLANK to avoid undesirable screen artifacts. This is accomplished
by recording the writes to the Display Control registers into the Deferred Control Buffer and replay-
ing the register writes during VBLANK. On enabling/disabling channels, the display FIFO controls
have to be set.

Sample code : Enable/Disable Channel Display

;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add

offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control

buffer in the offscreen memory.
;gs selector points to the physical screen base.
;The variable channelnum has the channel number, one of (CHANNELCTL,

CHANNEL0,CHANNEL1, CHANNEL2).
;displayformat contains the format and bitdepth of the surface being dis-

played, e.g. 16 BPP YUV 4.2.2.
;If the display channel is to be disabled, displayformat contains 0

EnableChannelDisplay proc near
mov bx,NEXTCHANNEL ;calculate
mul ax,channelnum ;register address offset for channel
movzx ebx,ax ;
mov cl,displayformat;
test cl,0ffh ;turn on display
jnz @F ;yes: skip to turn on display
mov fs:[bx+ChannelFormat],cl ;no turn off channel display
jmp DONE

@@:
mov edi,fs:[DisplayRecordPtr] ;load edi display write pointer

;read Display control status - disarms
Deferred Display replay

mov al,fs:[DisplayReplayStsReg];read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS ;if replay pending

@@:
mov al,fs:[DisplayReplayStsReg];else wait while replay active
test al,REPLAYACTIVE;
jnz @B ;skip to record writes if inactive

mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer
SM3110 Technical Reference Manual 6-45

Programmer’s Reference Si l icon
 M A G I C
RECORDLOADS:
sub edi,physicalbase ; edi has offset into buffer
LDAB edx,ChannelFormat ;load Channel format Base
add edx,ebx ;offset into desired channel
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov gs:[edi+4],cl ;enable channel

add edi,(8-4) ;compute write pointer
add edi,physicalbase ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY ;Enable replay at next

VBLANK DONE:
ret

EnableChannelDisplay endp

6.5.1.5 Set Display FIFO Controls

The display FIFO has 10 entries and needs to be programmed for entry allocation and thresholds
for the control channel as well as display channels 1 and 2. The FIFO control register has to be
reprogrammed on enabling or disabling display channels.

;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add

offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control

buffer in the offscreen memory.
;gs selector points to the physical screen base.
;The variable channelnum has the channel number, one of (CHANNELCTL,

CHANNEL0,CHANNEL1, CHANNEL2).
;displayformat contains the format and bitdepth of the surface being dis-

played, e.g. 16 BPP YUV 4.2.2.
;If the display channel is to be disabled, displayformat contains 0
6-46 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.1.6 Set Channel 0 X,Y Scale Factors

Sets up X and Y scale factor registers for for channel 0. The scale factors are based on the source
and destination image sizes. The scaling interpolation can be bilinear or nearest-neighbor. It is
not possible to scale down below an X or a Y factor of 1/16; the scaling upper bound is 8 for YUV
and 16 for RGB. The MPEG uses a bilinear interpolation scheme if the X scale factor is greater
than 0.25; nearest-neighbor is used otherwise. For non-MPEG applications, bilinear interpolation
is used with pre-filtering if the X scale factor is less than or equal to 0.5.

/* The following variables are given:
/*
Given
int srcXstride, srcYstride
int dstXstride, dstYstride, dstXoffset, dstYoffset, dstWidth, dstHeight, dstX-

left, dstYtop
(Refer to Figure 6-6 for definition of above arguments.)
Boolean MPEG (1 if source is from SM3110’s MPEG decoder, otherwise 0)
Boolean YUV422(1 if source is in interleave 4:2:2 format, 0 if planar format

4:2:0)
Boolean YUV (1 if source is in YUV format, 0 if RGB)
*/

#define IncFracBits 11
#define INTG(x) ((x)>>IncFracBits)
#define FRAC(x) ((x)&((1<<IncFracBits)-1))

/* Clamp scaling factors to supported range */

xfactor = (double)dstXstride/srcXstride;

/* clamp scale Factor in x down to 1/16 or up to 8 for YUV or 16 for RGB */
if (xFactor < 0.0625) {
 xFactor = 0.0625;
 dstXstride = srcXstride * xFactor + 0.5;
} else {
 if ((RGB && (xFactor > 16.0)) {
 xFactor = 16.0;
 dstXstride = srcXstride * xFactor + 0.5;
 } else {
 if (YUV && (xFactor > 8.0)){
 xFactor = 16.0;
 dstXstride = srcXstride * xFactor + 0.5;
 }
 }
}

yFactor = (double)dstYstride/srcYstride;

/* clamp scale Factor in y down to 1/16 or up to 8 for YUV or 16 for RGB */
if (yFactor < 0.0625) {
SM3110 Technical Reference Manual 6-47

Programmer’s Reference Si l icon
 M A G I C
 yFactor = 0.0625;
 dstYstride = srcYstride * yFactor + 0.5;
} else {
 if ((RGB && (yFactor > 16.0)) {
 xFactor = 16.0;
 dstYstride = srcYstride * yFactor + 0.5;
 } else {
 if (YUV && (yFactor > 8.0)){
 yFactor = 16.0;
 dstYstride = srcYstride * yFactor + 0.5;
 }
 }
}

/* Adjust the source x stride if pre-scaling by hardware is to be performed.
*/

prescale = 1;
if (!MPEG && (xfactor<=.5)) {
 while (xfactor<=.5) {
 xfactor *= 2.;
 prescale <<= 1;
 }
}

/* We need to pre-filter in X if prefilter > 1. Create a new source bitmap,
average every 2, 4 or 8 pixels in the x direction based on prescale of 2,
4 or 8 respectively. If p0,p1,p2,p3,p4,p5,p6,p7,p8..pn are pixels in a
row. If variable prescale == 2, then the new source pixels will be pn0,
pn1, pn2... where pn0=(po+p1)>>1, pn1=(p2+p3)>>1... If variable prefilter
== 4, then the new source pixels will be pn1, pn2, pn3... where
pn0=(po+p1+p2+p3)>>2, pn1=(p4+p5+p6+p7)>>2. Note: If srcWidth, the width
of the bitmap is not an even multiple of prefilter, the last pixel in the
row pixel is the average of the trailing remainder of pixels (less than
prescale) . */

if (prefilter > 1) {
 srcXstride = dstXstride/xfactor+.5;
 prefilter the Bitmap
}

/* Determine interpolation mode */
if (MPEG && (xFactor<=0.25))
 interpolationMode = XNEAREST+YNEAREST;
else
 interpolationMode = XBILINEAR+YBILINEAR;

/* Compute x and y increments for Y component */
xIncY = (int)(((double)(srcXstride-1)/(dstXstride-1))*(1<<IncFracBits)+.5);
yIncY = (int)(((double)(srcYstride-1)/(dstYstride-1))*(1<<IncFracBits)+.5);
6-48 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
/* Find (xOffsetY, yOffsetY) from (dstXoffset, dstYoffset) */
if (dstXleft < 0 && dstXoffset < abs(dstXleft)) {
 dstXoffset = -dstXleft;
 dstWidth = dstWidth + dstXleft - dstXoffset;
}
srcXstart = dstXoffset*xIncY; /* srcXstart in 0.21.11 format */
xOffsetY = INTG(srcXstart); /* xOffsetY = x offset for Y component

*/
initialXfracUV = FRAC(srcXstart>>1)>>(IncFracBits-4); /* 0.0.4 for-

mat */
……….. (Compute initialYfracUV in a similar way.)

/* Compute x and y increments for UV components */
xOffsetUV = xOffsetY>>1;
srcXstrideUV = srcXstride>>1;
if (!YUV420) {
 srcYstrideUV = srcYstride;
 yOffsetUV = yOffsetY;
} else {
 srcYstrideUV = srcYstride>>1;
 yOffsetUV = yOffsetY>>1;
}
xIncUV = (int)(((double)(srcXstrideUV-xOffsetUV-1-initialXfracUV*.0625) /
 (dstXstride-dstXoffset-1))*(1<<IncFracBits)+.5);
yIncUV = (int)(((double)(srcYstrideUV-yOffsetUV-1-initialYfracUV*.0625) /
 (dstYstride-dstYoffset-1))*(1<<IncFracBits)+.5);

viewX = dstXleft + dstXoffset;
viewY = dstYtop + dstYoffset;
interpolationMode = (initialYfracUV << 16) + initialXfracUV;

Sample code : Set Scaler Factor

;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add

offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control

buffer in the offscreen memory.
;gs selector points to the physical screen base.

Set Scaler Factor proc near
mov edi,fs:[DisplayRecordPtr] ;load edi display write pointer

;read Display control status - disarms Deferred Display replay
mov al,fs:[DisplayReplayStsReg] ;read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE ;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS ;if replay pending
SM3110 Technical Reference Manual 6-49

Programmer’s Reference Si l icon
 M A G I C
@@:
mov al,fs:[DisplayReplayStsReg] ;else wait while replay active
test al,REPLAYACTIVE ;
jnz @B ;skip to record writes if inactive

mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer

RECORDLOADS:
sub edi,physicalbase ; edi has offset into buffer
LDAD edx,Ch0Controls ;load Scaler controls, interpolation

mode with initial fractions
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov eax,interpolationMode ;
mov gs:[edi+4],eax ;

LDAD edx,Ch0YRControls ;load Scaler controls, Y/R increaments
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi+8],edx ;
mov ax,yIncY ;
shl eax,16 ;
mov ax,xIncY ;
mov gs:[edi+12],eax ;

LDAD edx,Ch0UVGBControls ;load Scaler controls, UV/GB increaments
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi+16],edx ;
mov ax,yIncUV ;
shl eax,16 ;
mov ax,xIncUV ;
mov gs:[edi+20],eax ;

LDAD edx,Ch0Offsets ;load Scaler controls, X,Y offsets
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi+24],edx ;
mov ax, yOffsetY ;
shl eax,16 ‘ ;
mov ax, xOffsetY ;
mov gs:[edi+28],eax ;

LDAD edx,Ch0UOffsets ;load Scaler controls, X,Y offsets for U
plane

or edx,physicalbase ;record reg address and data into
deferred buffer

mov gs:[edi+32],edx ;
6-50 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
mov ax, yOffsetY ;
shr ax,1 ;
add ax,srcYstride ;
shl eax,16 ;
mov ax, xOffsetY ;
shr ax,1 ;
mov gs:[edi+36],eax ;

LDAD edx,Ch0VOffsets ;load Scaler controls, X,Y offsets for V plane
or edx,physicalbase ;record reg address and data into deferred

buffer
mov gs:[edi+40],edx ;
mov ax, yOffsetY ;
shr ax,1 ;
add ax,srcYstride ;
shl eax,16 ;
mov ax,xOffsetY ;
add ax,srcXstride ;
shr ax,1 ;
mov gs:[edi+44],eax ;

LDAD edx,ChViewPositionStarts ;load Channel View base
add edx,ebx ;offset into desired channel
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi+48],edx ;
mov ax,viewY ;load viewport x,y
shl eax,16 ;
mov ax,viewX ;
mov gs:[edi+52],eax ;set viewport x,y

LDAD edx,ChViewPositionEnds ;load Channel Extent Base
add edx,ebx ;offset into desired channel
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi+56],edx ;
mov ax,viewY ;load x,y ends
add ax,dstHeight ;
shl eax,16 ;
mov ax,viewX ;
add ax,dstWidth ;
mov gs:[edi+60],eax ;set x,y ends

add edi,(64-4) ;compute write pointer
add edi,physicalbase ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY ;Enable replay at next

VBLANK
ret

Set Scaler Factor endp
SM3110 Technical Reference Manual 6-51

Programmer’s Reference Si l icon
 M A G I C
6.5.1.7 Set Overlay Priority

Sets overlay priority for the channel displays. The channel displays are logically designated as
background and foreground for composing the resulting display. When no mix or overlays are set,
the foreground appears on top of the background image. If only one channel is enabled, it is
assigned as the background; the foreground is assigned a channel number that is disabled.

Sample code: Set Overlay Priority

;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add

offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control

buffer in the offscreen memory.
;gs selector points to the physical screen base.
;variables forechannel and backchannel have channel numbers , one
;of (CHANNEL0,CHANNEL1,CHANNEL2).

SetOverlayPriority proc near
mov edi,fs:[DisplayRecordPtr];load edi display write pointer

;read Display control status - disarms
Deferred Display replay

mov al,fs:[DisplayReplayStsReg] ;read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS;if replay pending

@@:
mov al,fs:[DisplayReplayStsReg];else wait while replay active
test al,REPLAYACTIVE ;
jnz @B ;skip to record writes if inactive

mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer

RECORDLOADS:
sub edi,physicalbase ;edi has offset into buffer
LDAD edx,OverlayPriority ;load Overlay priority
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov al,forechannel ;load foreground
sub al,2 ;normalize
shl eax,8 ;
mov al,backchannel ;load background channel
sub al,2 ;normalize
mov gs:[edi+4],eax ;enable channel

add edi,(8-4) ;compute write pointer
add edi,physicalbase ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
6-52 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY
;Enable replay at next VBLANK

ret
SetOverlayPriority endp
SM3110 Technical Reference Manual 6-53

Programmer’s Reference Si l icon
 M A G I C
6.5.1.8 Set Mix Controls - Blend

With the priority controls set, the surfaces attached to the background can be blended with the
foreground channel in certain modes. The blending can be constant or controlled on a per-pixel
basis by defining a control surface and has to be enabled. For constant blend, the blend factor is
set in the Mix Control register. This determines the percentage of source and destination used for
the blend. With blend enabled, if a control surface (4BPP) is defined and enabled, the blend factor
is defined by the control surface bitmap on a per-pixel basis. The constant blend is used for areas
that do not overlap the control surface.

Sample code : Set Mix Controls - Blend

;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add
offsets to yield register addresses
;displayreplaybase has the base address offset of Display Deferred Control
buffer in the offscreen memory.
;gs selector points to the physical screen base.
;Assume that surfaces have been previously defined and attached to channel 0
and channel 1, and priority has been set.
;This example sets a constant blend for back and fore channels and enables
blending. Blend constant is specified by the
;variable blendfactor (0 < blendfactor < 0fh). If a 4BPP blend surface has
been previously defined and attached to
;the control surface, enables blend on a per pixel basis on the overlapping
areas.

SetBlending proc near
mov edi,fs:[DisplayRecordPtr] ;load edi display write pointer

;read Display control status - disarms
Deferred Display replay

mov al,fs:[DisplayReplayStsReg];read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS ;if replay pending
6-54 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
@@:
mov al,fs:[DisplayReplayStsReg];else wait while replay active
test al,REPLAYACTIVE ;
jnz @B ;skip to record writes if inactive

mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer

RECORDLOADS:
sub edi,physicalbase ;edi has offset into buffer
LDAW edx,Dsp0MixCtl ;load Mix control register
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov ax,blendfactor ;load blend constant
or ax,BLENDENABLE ;enable blend
mov gs:[edi+4],ax ;load back/fore mix data

add edi,(8-4) ;compute write pointer
add edi,physicalbase ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY

;Enable replay at next VBLANK
ret

SetBlending endp
SM3110 Technical Reference Manual 6-55

Programmer’s Reference Si l icon
 M A G I C
6.5.1.9 Set Mix Controls - Color Keying

Color keying allows pixels with a specified color (the key color) on an overlapping surface to
become transparent and display the pixels from the underlying surface. The key color is set and
the keying enabled. If the surface being compared is a YUV surface, the chroma compare color
(Ch0ChromaCmp) is set. The keying operation can be performed on background (RGB) with the
foreground channel. If keying is enabled and a 1 BPP control surface is defined and enabled, the
control surface specifies the keying. Pixels corresponding to a 1 bit on the control surface allow
the foreground to be displayed, while a 0 bit displays pixels from the background surface.

Sample code : Set Mix Controls - Color Keying

;fs selector points to the register base address
;Variable physicalbase has the immediate register physical base address, add
offsets to yield register addresses

;displayreplaybase has the base address offset of Display Deferred Control
buffer in the offscreen memory.

;gs selector points to the physical screen base.
;Assume that surfaces have been previously defined and attached to channel 0
and channel 1, and priority has been set.

;This example sets key color given in variable keycolor and enables keying for
the back channels.

SetColorKeying proc near
mov edi,fs:[DisplayRecordPtr] ;load edi display write pointer

;read Display control status -
disarms Deferred Display replay

mov al,fs:[DisplayReplayStsReg] ;read status, disarm replay
and al,REPLAYPENDING+REPLAYACTIVE ;
cmp al,REPLAYPENDING ;skip to add to Control buffer
jz RECORDLOADS ;if replay pending

@@:
mov al,fs:[DisplayReplayStsReg] ;else wait while replay active
test al,REPLAYACTIVE ;
jnz @B ;skip to record writes if inac-

tive

mov edi,displayreplaybase ;set read and write pointers
mov fs:[DisplayRecordPtr],edi ;set display write base pointer
mov fs:[DisplayReplayPtr],edi ;set display read base pointer
6-56 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
RECORDLOADS:
sub edi,physicalbase ; edi has offset into buffer
LDAD edx,Disp0ColCmp ;load Display0 back/fore key compare

color register
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi],edx ;
mov eax,keycolor ;set key color
mov gs:[edi+4],eax ;load Key compare color

LDAW edx,Dsp0MixCtl ;load Mix control register
or edx,physicalbase ;record reg address and data into

deferred buffer
mov gs:[edi+8],edx ;
mov ax,ENABLECOLKEY+KEYNORMAL+KEYSRCFORE
mov gs:[edi+12],ax ;load back/fore mix data

add edi,(16-4) ;compute write pointer
add edi,physicalbase ;
mov fs:[DisplayRecordPtr],edi ;set display write pointer
mov fs:[DisplayReplayCtlReg],ENABLEREPLAY ;Enable replay at next

VBLANK
ret

SetColorKeying endp

6.5.1.10 Get Displayed Scanline

Returns the current scanline being displayed. The first line of active display is 0 increasing in Y,
resets to 0 at the end of vertical blanking.

;fs selector points to the register base address.

mov ax,fs:[VerticalCounter] ;read scanline currently being displayed
SM3110 Technical Reference Manual 6-57

Programmer’s Reference Si l icon
 M A G I C
6.5.2 2D Command and Data FIFOs

All commands, parameters and operand data for the rendering engine are communicated by the
host processor through two FIFOs that are fetched, parsed and executed by the rendering engine
command processor. This allows concurrence between the host processor and the rendering
engine that significantly improves drawing performance.

The two FIFOs are implemented in a portion of local memory allocated by the display driver. This
has several advantages:

1. The size of these buffers may be (relatively) much larger than can be implemented
using conventional SRAM of latch array FIFOs. This reduces the amount of overhead
that the driver must spend managing a command/data FIFO (to prevent overflows).

2. It allows much larger data images (particularly BLTs and text) to be written into the
buffer. This allows a longer sequence of commands to be posted by the driver so that
it can return earlier or perform another task.

3. It allows the state of a command and its operand data to be retained in local memory if
some task switch occurs with minimal state-saving overhead.

The control/parameter and image/data FIFO are implemented as circular buffers. The base
addresses, write pointers and read pointers are stored memory controller registers and must be
initialized by the display driver. The base address and size of each circular buffer are configurable
and should be set up by writing directly to the registers before the engine is used the first time.
They should not have to be changed again unless the buffer needs to be moved or resized.

The write pointer is normally updated by hardware when control information is written to the ren-
dering engine aperture. The read pointer is incremented when this information is read by the ren-
dering engine command processor. If the read pointer reaches the write pointer, the circular buffer
is empty and fetching of control information stops pending further writes. If the write pointer
reaches the read pointer, the circular buffer is full and further data will not be accepted from the
host. The host bus interface may abort (if possible) to prevent locking out other independent
transfers.

The driver should make every attempt to avoid having a transfer stall due to a filled condition by
checking the status of the buffer if a large transfer is to be performed.
6-58 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.2.1 Image/Data Control Port

The 2D image data is also passed through buffers in local memory. Transfer of data images must
be broken up into blocks of 64KB or less, constrained by the size of the buffer allocated. The
buffer base address and buffer size must be initialized prior to use. The read and write pointers
must also be initialized to zero, indicating an empty buffer. These should not have to be accessed
again during normal operation.

6.5.2.2 2D Command Port

The command port is a 64KB port through which control and parameter information can be written
in local memory. Additional control information is encoded in the address to reduce the number of
data transfers required across the host bus. The least significant 16 bits of address are extracted,
parsed and inserted into bits [31:28] and [15:12] of each parameter doubleword before it is written
into the rendering buffer list. The actual address used bears no relationship to the address to
which the parameter is written to local memory. If the command is other than a NOP, a double-
word entry is automatically stored in the buffer.

Wri te Pointer

Read Pointer

Buf fer Base

Val id
Entr ies

Increasing

Address

Data
(rectangular parameters)

Data
(l inear parameters)

Aperture Base End 7EH 8 H C o m m a n d Index 00B

0 Index Parameter C o m m a n d Parameter

1 Index C o m m a n d Parameter

0031 24 23 22 16 15 12 11 08 05 04 02 01

31 00

0031

30 28 16 15 12 1127

30 28 27 24 23

A[05]=1A[05]=0
SM3110 Technical Reference Manual 6-59

Programmer’s Reference Si l icon
 M A G I C
6.5.2.3 FIFO Status

The FIFO pointers will be updated whenever data is written by the host through the command/
parameter or image data ports or read by the engine, which must have been started.

The read and write pointers may be directly read by the host to determinehow full or empty a FIFO
is. Note that if the host is writing to the respective FIFO or the engine is operating, the value read
may be inaccurate for one of several reasons:

1. The exact value of each register may be off due to the latency in performing the read
operation.

2. The accuracy of the value read may be wrong due to the latency of reading more than
one byte, which may take several clock cycles. If one of the counters is updated while
a read occurs, the value read from each byte may occur at slightly different times,
yielding an inconsistent sample of counter contents. For example, the read from the
first byte samples the contents of the entire counter as 03F0H but returns only the
least significant byte as F0H; then the read of the second byte samples the contents
of the entire counter as 0400H but returns the most significant byte as 04H. The bus
interface will assemble these two bytes and return a value of 04F0H, which is incor-
rect. To eliminate this problem, it is recommended that only the most significant byte
be read unless the engine is stopped. This will guarantee a maximum inaccuracy of
100H bytes, because the content of the least significant byte is not known.

3. A single bit returns the status of each FIFO indicating whether less than 1/8th of the
FIFO remains unfilled. The driver may check this single bit to determine whether the
exact status of the FIFO should be read to determine whether additional command
should be written. Note that in normal circumstances the large size of the command/
parameter FIFO means it should never get completely filled.

An additional flag byte is provided to indicate that the FIFOs are completely empty. This is useful
for the image data FIFO, since this indicates the maximum amount of data that can be written.
6-60 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.3 2D Rendering Engine Commands
The commands and parameters are programmed via the 64KB memory-mapped control port, and
any image data (for operations involving a source bitmap or pattern) is copied to a 32KB image
port within 16KB address range (C000h to FFFFh). The parameter registers are at specific
addresses, and alternate parameter addresses have additional control information encoded.
Parameters written to these specific addresses trigger execution of commands. This mechanism
eliminates the need to explicitly program a command.

The parameter addresses and the commands are defined in Section 6.14.1, Equates. The 2D pro-
gramming examples use Intel assembly language style constructs. All examples assume:

fs = CmdPortSelector: selector points to the register base address
es = ImagePortSelector: selector points to the image data buffer base address

The 2D commands include:

• Wait Engine Idle, Check FIFO Size, Set Clip Rectangle
• Load Mono Pattern, Load Mono Color, Load General Pattern
• Block fill, Transparent_Text and Opaque Text
• BitBLT with 256 ROPs
• Transparent BitBLT with 256 ROPs
• Line segments

It is assumed that the controller has been set to the desired mode, i.e., the resolution and the color
depth have been selected. Note that these commands are operational only in 8BPP, 16BPP or
24BPP modes. The programming is consistent for all color depths. The color information is signif-
icant in the lower order bits.

6.5.3.1 Wait Engine Idle

To ensure data integrity, direct read/write to display memory may need to wait for all rendering
engine operations to finish.

Sample code : Wait Engine Idle

WaitEngineIdle macro wSelector, reg
Local _loop
_loop:

Mov reg, wSelector&:[Status2D]
 test reg, BUSY2D

jnz _loop
endm
SM3110 Technical Reference Manual 6-61

Programmer’s Reference Si l icon
 M A G I C
6.5.3.2 Check FIFO size

The 2D engine commands written into the Control Port addresses are stored in a command FIFO.
The image data written into the Image Port addresses are stored in the image FIFO. The engine
executes these commands and consumes the image data. The application can query the FIFO
entries available in eighths of the total allocated size. Both the command FIFO and image FIFO
size can go up to 32KB maximum. In Section 6.4.5, Physical Buffer for FIFOs, command FIFO is
allocated 16KB as an example. One eighth of allocated buffer is the minimum size to be checked.

Sample code : Check FIFO size

WaitCMDFIFO macro wSelector, Eighths
Local _loop
_loop:

cmp byte ptr wSelector&:[CmdFIFOStatus], Eighths
jl _loop
endm

WaitIMGFIFO macro wSelector, Eighths
Local _loop
_loop:

cmp byte ptr wSelector&:[ImgDataFIFOStatus], Eighths
jl _loop
endm

Thus, to wait for 2D command FIFO 4KB (1/4 of 16KB) empty, use this code.

mov fs, CmdPortSelector
WaitCMDFIFO fs, FIFO1_4TH

To wait for 2D image FIFO 4KB (1/8 of 32KB) empty, use this code.

WaitIMGFIFO fs, FIFO1_8TH
6-62 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.3.3 Clip Rectangle

SM3110 supports hardware clipping to eliminate the software checking whether the rendering des-
tination’s dimension is out of the defined boundary. Note that all bounding coordinates are inclu-
sive.

Sample code : Set Clip rectangle

;fs= CmdPortSelector: selector points to the register base address
; lpClipRect = clip rectangle

ClipRectangle proc near
mov gClipFlag,0 ;global flag, default 0
cmp word ptr lpClipRect+2, 0 ;see if clip rect exist?
je CR_done ;no, exit
lds si,lpClipRect ;ds:si-->clip rect

WaitCMDFIFO fs, FIFO1_8TH
mov eax,[si] ;left and top are inclusive
mov edx,[si][4] ;right and bottom are exclusive
sub edx,10001h ;make them inclusive
mov fs:[ClipULXY], eax ;Load h/w clip registers
mov fs:[ClipLRXY], edx
mov gClipFlag,F_CLIP ;save for later use

CR_done:
ret

Cliprectangle endp

After calling this routine, remember to combine the global clipping flag ‘gClipFlag’ when setting the
parameter “FLAGs”.
SM3110 Technical Reference Manual 6-63

Programmer’s Reference Si l icon
 M A G I C
6.5.3.4 Load Mono Pattern

Loads an 8x8 mono pattern into the internal pattern register. The pattern is stored internally as a
color pattern with a 1 in the mono pattern replaced by the color from the Foreground color register
and a 0 replaced by the color from the Background color register. This pattern will be used in sub-
sequent Pattern Copy or BitBLT commands that involve a mono pattern.

Sample code : Load Mono Pattern

;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to a 8 byte buffer that contains the 8x8 mono pattern
;eax has the foreground color COLOR0 and ebx has the background color COLOR1

LoadMonoPattern proc near
WaitCMDFIFO fs, FIFO1_8TH
mov fs:[BGColor],ebx ;load background color and load
mov fs:[FGColor+EXEC_LOAD_MPATTERN],eax ;foreground color and exe-

cute command
WaitIMGFIFO fs, FIFO1_8TH
xor edi,edi ;index into image buffer == 0
movsd ;load 8 bytes of mono pattern
movsd
ret

LoadMonoPattern endp

6.5.3.5 Load Color Pattern

Loads an 8x8 color pattern into the internal pattern register. This pattern will be used in subse-
quent Pattern Copy or BitBLT commands that involve a color pattern.

Sample code : Load Color Pattern

;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to a 8x8 color bitmap buffer that contains the mono pattern

LoadColorPattern proc near
WaitCMDFIFO fs, FIFO1_8TH
mov fs:[EXEC_LOAD_CPATTERN+NOLOAD],0 ;execute command **
mov ecx, dwBpp ;8/16/24 bpp
add ecx, ecx ;8*8*bpp/8 /4 for DWORD count=bpp*2
WaitIMGFIFO fs, FIFO1_8TH
xor edi,edi ;index into image buffer == 0
rep movsd ;load the color pattern
ret

LoadColorPattern endp

NOTE: The destination X,Y for the succeeding Pattern Copy or BitBLT can be set while executing
the load color pattern command.
6-64 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.3.6 Load General pattern

For the general case, a Load Pattern routine can be as follows:

Sample code : Load Pattern

;lpPattern points to a 8x8 color/mono pattern

LoadPattern proc near
cmp word ptr lpPattern+2, 0 ;see if pattern exist?
je LP_done ;no, exit
lds si, lpPattern ;ds:si-->clip rect
cmp ds:[si].BitsPerPixel,1 ;check if color or mono
je LP_mono

LP_color:
lea esi,ds:[si].Color ;points to start of color pattern
call LoadColorPattern
jmp LP_done

LP_mono:
lea esi,ds:[si].Mono ;points to start of mono pattern
call LoadMonoPattern

LP_done:
ret

LoadPattern endp
SM3110 Technical Reference Manual 6-65

Programmer’s Reference Si l icon
 M A G I C
6.5.3.7 Block fill (Opaque Rectangle)

Draws a solid rectangle filled with COLOR1. The rectangle top left corner is located at X1,Y1 with
height of HEIGHT1 and width WIDTH1. This command can also be used to do the BitBLT opera-
tions with ROP set to WHITENESS (255) or BLACKNESS (0).

Sample code : Block fill (Opaque Rectangle)

;fs= CmdPortSelector: selector points to the register base address

OpaqueRectangle proc near
WaitCMDFIFO fs, FIFO1_8TH
Set2WordsToReg32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low

word
Set2WordsToReg32X1,Y1,bx ;ebx=(X1,Y1), X1 in low

word
mov edx,COLOR1 ;the color for the fill

rectangle
mov fs:[XYExtents],eax ;set height and width
mov fs:[DestXY],ebx ;load top left x,y
mov fs:[BGColor+EXEC_OPAQUE_RECT],edx ;load color and execute

command
ret

OpaqueRectangle endp

Note : Throughout this document, the following macro is used to move the source and destination
rectangle dimensions into registers.

Sample code : Set 2 WORDs to a 32-bit register

Set2WordsToReg32 macro Lo_word, Hi_Word, reg16
mov reg16,Hi_Word
shl e®,16
mov reg16,Lo_Word ;upper-left X,Y coordinate of the rect-

angle(X in low word)
endm
6-66 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.3.8 Transparent Text

The monochrome bitmap that defines the text character is rendered. The image is color-expanded
with pixels corresponding to a 1 colored with COLOR1, set in the foreground color register. Pixels
corresponding to a 0 are unmodified. The character is rendered with the top left corner at X1,Y1.
The character width and height are WIDTH1 and HEIGHT1, respectively. Each new row of the bit-
map defining the text begins on the next bit. The last double word written to the image port may
have to be padded .

Sample code: Transparent Text

;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to the monochrome character data
;ecx has count double words in the monochrome image = ((((width +7)/8) *

height) + 3) / 4 dwords

TransparentText proc near
WaitCMDFIFO fs, FIFO1_8TH
Set2WordsToReg32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low word
Set2WordsToReg32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
mov edx,COLOR1 ;the foreground color
mov fs:[FGColor],edx ;set foreground color
mov fs:[XYExtents],eax ;set height and width
mov fs:[DestXY+ EXEC_TRANS_TEXT],ebx ;load top left x,y & execute cmd
WaitIMGFIFO fs, FIFO1_8TH
xor edi,edi ;index into image buffer == 0
rep movsd ;copy mono bitmap
ret

TransparentText endp
SM3110 Technical Reference Manual 6-67

Programmer’s Reference Si l icon
 M A G I C
6.5.3.9 Opaque Text

The monochrome bitmap that defines the text character is rendered. The image is color-expanded
with pixels corresponding to a 1 colored with COLOR1, the foreground color. Pixels corresponding
to a 0 are colored with COLOR0, the background color.

Sample code : Opaque Text

;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;ds:[esi] points to the monochrome character data
;ecx has count double words in the monochrome image = ((((width +7)/8) *

height) + 3) / 4 dwords

OpaqueText proc near
WaitCMDFIFO fs, FIFO1_8TH
Set2WordsToReg32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low word
Set2WordsToReg32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
mov edx,COLOR1 ;the foreground color
mov edi,COLOR0 ;the background color
mov fs:[BGColor],edi ;set background color
mov fs:[FGColor],edx ;set foreground color
mov fs:[XYExtents],eax ;set height and width
mov fs:[DestXY+ EXEC_OPAQUE_TEXT],ebx ;load top left x,y & exe-

cute command
WaitIMGFIFO fs, FIFO1_8TH
xor edi,edi ;index into image buffer == 0
rep movsd ;copy mono bitmap
ret

OpaqueText endp
6-68 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.3.10 BitBLT

The BitBLT operation involves movement of rectangular blocks of data from the source to the des-
tination on the screen. The source can be on the screen or in a system memory bitmap. If the
source is from the system memory, the bitmap can be monochrome or color. The monochrome
bitmaps are color-converted based on the foreground and the background colors. If the source bit-
map bit is a 1, the foreground color is used to render, and if the bitmap bit is a 0, the background
color is used. An 8x8 pattern can be involved in the BitBLT operation. The three operands pat-
tern, source and destination can be combined based on the ternary raster operation specified
(ROP). The ternary ROP specifies a combination of AND, OR, XOR and NOT operations between
the three operands. The resulting data is rendered into the destination.

BitBLT with ROPs that do not contain source, pattern or destination operands can be rendered
using the BitBLT command. The BitBLT operations with only the destination operand are similar to
the BitBLT operation with pattern operand described below. All BitBLT operations that contain a
pattern operand must first load the monochrome or the color pattern. The load mono pattern or
the load color pattern command is used for this operation. BitBLT operations with source operand
in local memory (screen) must set up drawing directions in X and Y, if the source and destination
rectangles overlap. Default drawing directions for all other BitBLTs are increasing in the X and Y
directions.
SM3110 Technical Reference Manual 6-69

Programmer’s Reference Si l icon
 M A G I C
6.5.3.11 Pattern BLT Without Source Operand

Performs a BitBLT to the specified destination rectangle. The ROP defined for this operation con-
tains only the pattern operand or a pattern and destination combination. The top left of the rectan-
gle is at X1,Y1 and the rectangle has a height HEIGHT1 and a width WIDTH1. The monochrome
or color pattern is previously loaded with a pattern load command. The rendered pattern is aligned
with the origin 0,0. If only a destination operand is present in the ROP, no pattern is loaded.

Sample code : Pattern BLT

;fs= CmdPortSelector: selector points to the register base address
;variable RopValue = ROP function, contains only the pattern, or pattern and

destination operands

PatternBlt proc near
call ClipRectangle ;set clip rectangle if necessary
call LoadPattern ;Load the pattern to internal buffer
WaitCMDFIFO fs, FIFO1_8TH
Set2WordsToReg32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low word
Set2WordsToReg32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
mov fs:[XYExtents],eax ;set height and width
mov fs:[DestXY],ebx ;load top left x,y & execute command
mov ecx,F_XP+F_YP+CMD_BITBLT ;draw in X left to right, Y top to bot-

tom, blt command
or ecx,gClipflag ;set clip flag
mov cl,RopValue ;move ROP into low byte
mov fs:[FLAGs + EXEC_CMD],ecx ;set flags register & execute

command
ret

PatternBlt endp

For the pure pattern copy (ROP=0F0h) case without clipping rectangle, the last 5 command lines
can be combined as following:

mov fs:[DestXY + EXEC_PAT_COPY],ebx ;load top left x,y & exe-
cute command
6-70 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.5.3.12 Display Memory Source BLT with/without Pattern

Performs a BitBLT to the specified destination rectangle. The ROP defined for this operation con-
tains a source operand or a source and destination combination. There can be an associated pat-
tern operand in each case. The top left of the destination rectangle is at X1,Y1 and the rectangle
has a height HEIGHT1 and a width WIDTH1. The source is in local display memory and the top
left of the source rectangle is at X0,Y0. If a pattern is present, the monochrome or a color pattern
is previously loaded with a pattern load command. The rendered pattern is aligned with the origin
at 0,0. If source and destination rectangles overlap, then BLT directions need to be determined in
parameter ‘FLAGs’.

Sample code : Screen To Screen BLT

;fs= CmdPortSelector: selector points to the register base address
;variable RopValue = ROP function, contains only source, or source and desti-

nation operands

ScreenToScreenBlt proc near
call ClipRectangle;set clip rectangle if necessary
call LoadPattern;Load the pattern to internal buffer

WaitCMDFIFO fs, FIFO1_8TH
mov ecx,F_XP+F_YP+CMD_BITBLT+F_COLOR ;draw X left to right, Y

top to bottom, blt
cmd,color src

;;set blt directions
mov ax,Y1
cmp ax,Y0
jlsbd_done ;Y1<Y0, positive direction
jg sbd_set_neg ;Y1>Y0, negative direction
mov ax,X1 ;Y1=Y0, check X
cmp ax,X0
jlesbd_done ;Y1=Y0, X1<=X0, positive direction

sbd_set_neg: ;set negative direction
orecx,F_XN+ F_YN ;decreasing x,y
mov ax,HEIGHT1
mov dx,WIDTH1
dec ax ;HEIGHT1-1
dec dx ;WIDTH1- 1
add Y1,ax ;Y1 = Y1+HEIGHT1-1
add Y0,ax ;Y0 = Y0+HEIGHT1-1
add X1,dx ;X1 = X1+WIDTH1- 1
add X0,dx ;X0 = X0+WIDTH1- 1

sbd_done:
or ecx,gClipflag ;set clip flag
mov cl,RopValue ;move ROP into low byte
mov fs:[FLAGs],ecx ;set flags register

Set2WordsToReg 32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low word
Set2WordsToReg 32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
Set2WordsToReg 32X0,Y0,dx ;edx=(X0,Y0), X0 in low word
mov fs:[XYExtents],eax ;set height and width
mov fs:[SrcXY],edx ;load source x,y and destination
mov fs:[DestXY+EXEC_CMD],ebx ;x,y & execute command
ret

ScreenToScreenBlt endp
SM3110 Technical Reference Manual 6-71

Programmer’s Reference Si l icon
 M A G I C
Note:

A screen-to-screen BLT does not necessarily mean from visible area to visible area. The source
and/or destination may be from offscreen memory. There are two ways to perform this type of BLT.
The first is to specify a Surface Descriptor for the offscreen surface. If the surface to be BLTed is
not the current one, set the base address, (Ax0h), pixel size (Ax4h) and surface stride (Ax4h),
then set the surface descriptor (824h) to that surface index. Do a normal screen-to-screen BLT
and the operation will use the specified surface.

In the second BLT method, set the source stride register (804h) to the source’s stride in offscreen
memory, then set the linear source address register (838h) to the source’s offset in offscreen
memory. Set the destination using surface descriptors as described above and the BLT using the
LinBLT operation (820h[11:08]=6H) instead of the standard BitBLT

6.5.3.13 System Memory Source BLT with/without Pattern

Performs a BitBLT to the specified destination rectangle. The source is image data in system
(CPU) memory. The ROP defined for this operation contains a source operand or a source and
destination combination. There can be an associated pattern operand in each case. If a pattern is
present, the monochrome or color pattern is previously loaded with a pattern load command. The
rendered pattern is aligned with the origin at 0,0. The top left of the destination rectangle is at
X1,Y1 and the rectangle has a height HEIGHT1 and a width WIDTH1. The source data can be
monochrome or color. The image data in moved in one of three(3) ways: as an opaque BLT, as a
monochrome transparent BLT, or as a color transparent BLT. Each of these is shown below.

Opaque BitBLT

Usually opaque operation is used with ternary ROP. With a monochrome source, the 1BPP image
data is color expanded. Pixels corresponding to a 1 in the source bitmap are colored with the fore-
ground color, and pixels corresponding to a 0 are colored with the background color.

Sample code : Image Data Source BLT

;fs= CmdPortSelector: selector points to the register base address
;es=ImagePortSelector: selector points to the image data buffer base address.
;variable RopValue = ROP function, contains only source, or source and desti-

nation operands

ImageDataSrcBlt proc near
call ClipRectangle ;set clip rectangle if necessary
call LoadPattern ;Load the pattern to internal buffer
WaitCMDFIFO fs, FIFO1_8TH

;;set command flags portion - begin
mov ecx,F_IMGDATA+ F_DWORD+CMD_BITBLT ;CPU to screen Blt, mono source
lds esi,lpSrcDevice ;point to source device
cmp ds:[esi].BitsPerPixel,1 ;check if color or mono?
Jne SB_src_color

SB_src_mono:
Mov eax,COLOR1 ;load foreground color
6-72 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Mov ebx,COLOR0 ;load background color
mov fs:[FGColor],eax
mov fs:[BGColor],ebx
jmp SB_check_src_done

SB_src_color:
or ecx,F_COLOR+ F_TCOPAQUE ;source is color bitmap, no transparency

SB_check_src_done:
or ecx,gClipflag ;set clip flag
mov cl,RopValue ;move ROP into low byte
mov fs:[FLAGs],ecx ;set flags register

;;set command flags portion - en

Set2WordsToReg32WIDTH1,HEIGHT1,ax ;eax=(W1,H1), W1 in low word
Set2WordsToReg32 X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
mov fs:[XYExtents],eax ;set height and width and destination
mov fs:[DestXY+EXEC_CMD],ebx ;top left x,y & execute command

;calculate the number of dwords to be transferred= ((width*bpp + 31) / 32) *
height dwords

movzx eax,ds:[esi].BitsPerPixel
mul WIDTH1
add eax,31
shr eax,5

;note that each row is padded so new rows begin on a fresh dword. If the image
is color then F_COLOR bit of the FLAGs has to be set

;In F_DWORD mode, new rows use the next dword of source data, rows ends may
have to be padded

;if the image is larger then 64K, the transfer is performed in increments of
the image buffer size

mov edx,ds:[esi].WidthBytes ;src rect’s bytes per scan line
lea esi,ds:[esi].BmpData ;pointer to image data in CPU
mov ebx,HEIGHT1

SB_loop:
mov ecx,eax ;transfer dword count
Push esi
WaitIMGFIFO fs, FIFO1_8TH
xor edi,edi
rep movsd ;transfer the image
pop esi
add esi,edx ;advance to next line of src data
dec ebx
jnz SB_loop
ret

ImageDataSrcBlt endp
SM3110 Technical Reference Manual 6-73

Programmer’s Reference Si l icon
 M A G I C
Monochrome Transparent BitBLT

To inhibit rendering of pixels corresponding to a 0 bit or a 1 bit in a monochrome source bitmap, set
the Mono Source BLT Transparency bits in the FLAGs register to the desired configuration. The
following example transfers a mono rectangular image to screen. The monochrome image is color
expanded. Pixels corresponding to a 1 in the source bitmap are colored with the foreground color.
Pixels corresponding to a 0 are unmodified.

In the “set command flags portion ” of sample code above, modify to the following

mov ecx,F_IMGDATA+ F_MBT+F_DWORD+CMD_BITBLT
;CPU to screen Blt, mono source,
Transparent background

mov eax,COLOR1
mov fs:[FGColor],eax ;load foreground color
or ecx,gClipflag ;set clip flag
mov cl,RopValue ;move ROP into low byte
mov fs:[FLAGs],ecx ;set flags register

Note: By setting the F_MFT bits in the FLAGs register instead of the F_MBT bits, background
color is rendered for pixels corresponding to a 0 bit in the source bitmap. The pixels correspond-
ing to the 1 bit in the source bitmap are unmodified. Selecting the F_MNORMAL mode in the
FLAGs register performs a straight color expansion, with 0’s and 1’s colored with background and
foreground respectively. The F_MINVERT performs an inverted color expansion, with 1’s
expanded to background color and 0’s expanded to foreground color.
6-74 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Color Transparent BitBLT

Transparent BitBLT commands are similar to normal BitBLT commands. With a color bitmap as a
source, it is possible to inhibit rendering pixels of a given source color. With this configuration
selected in the flags register, if source pixels are the same as the compare color set in the back-
ground color register, corresponding pixels in the destination are not rendered. The flags can also
be set so updates occur only when the color matches. The following example performs a color
Transparent BitBLT. The source color bitmap is in the CPU system memory. The compare color is
COLOR_COMPARE and has to be loaded into the background color register. The destination is
not updated for pixels when source pixel color is equal to COLOR_COMPARE. The destination
rectangle is at X1,Y1 with a height HEIGHT1 and width WIDTH1. The ROP is SOURCECOPY.

In the “set command flags portion ” of sample code above, modify to the following

mov eax,F_IMGDATA+ F_COLOR+F_DWORD+F_TCSRC+CMD_BITBLT
;CPU to screen transparent Blt, color
source,Transparent color source

mov eax,COLOR_COMPARE
mov fs:[TRANSColor],eax ;load compare color
or ecx,gClipflag ;set clip flag
mov cl,0CCh ;move SOURCECOPY ROP into low byte
mov fs:[FLAGs],ecx ;set flags register

Note: The transparency function can be applied to the destination by setting F_TCDEST in the
flags register instead of the F_TCSRC bits. Destination pixels are unmodified if the destination
pixel color equals COLOR_COMPARE the compare color as set in the background color register.

Transparent pattern BLTs can also be performed for BitBLTs involving patterns by selecting
F_TCPAT bits in the flags register. The pattern has to be previously loaded. Destination pixels are
not updated if the pattern pixel color equals COLOR_COMPARE, the compare color. In summary,
color transparent flags can set to F_TCSRC, F_TCDEST or F_TCPAT in the FLAGs register for
Source, Destination or Pattern transparency, respectively. Additionally, the F_TBINVERT flag can
be set so the sense of the transparency can be inverted. The BitBLT destination is updated only
when a color match occurs. Transparent BLTs can also be performed with local display memory
(screen to screen) BitBLTs.
SM3110 Technical Reference Manual 6-75

Programmer’s Reference Si l icon
 M A G I C
6.5.3.14 Line Draw

The SM3110 controller does not have an explicit line draw command. It does provide commands
to draw horizontal or vertical intercepts which can be used to draw lines between arbitrary X,Y
coordinate pairs. The line drawing can be classified into 8 direction types (eight octants) based on
the drawing direction. A single command draws a horizontal line intercept and can position the
destination X,Y to the next pixel in the previous or next row, if drawing in X major (|x2-x1| > |y2-
y1|). A series of these commands can be used to draw lines which are X major, with X increasing
or X decreasing. If the lines are Y major (|y2-y1| > |x2-x1|), the line can be constructed by drawing
a series of vertical line intercepts. The destination X,Y after drawing of each vertical intercept can
be positioned to the next row (up or down), and to the previous or next column by setting appropri-
ate FLAGs. For efficiency, treat horizontal and vertical lines as special cases.

Draw X Major line

The example below describes a line drawn in the first octant. The start point is X1,Y1 and the end
point is X2,Y2 with |X2-X1| > |Y2-Y1| and X2 > X1 and Y2< Y1.

Algorithm:

x = X1;
dx = X2 -X1; dy = Y1 - Y2;
error = 2 dy - dx;
intercept = 0x10000; /* preset y extent = 1, indicates X major */

while (x < X2)
{
 intercept += 1;
 if (error <= 0)

{
error += 2 dy;

 } else
{

 error += 2 * (dy - dx);
draw_pixels(intercept);
intercept = 0x10000; /* preset y extent = 1, indicates X major */

 }
 x += 1;
}
if (intercept != 0x10000)

draw_pixels(intercept);
6-76 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Sample code : Draw X Major line

;fs= CmdPortSelector: selector points to the register base address
DwarXMajorLine proc near

call ClipRectangle ;set clip rectangle if necessary
WaitCMDFIFO fs, FIFO1_8TH
mov ecx,F_XP+F_YN+F_CLIP+CMD_LINE ;Clip on, x positive,
 ;y negative, horizontal line
or ecx,gClipflag ;set clip flag
mov cl,RopValue ;move ROP into low byte
mov fs:[FLAGs],ecx ;set flags register
mov eax, COLOR1 ;the draw color
Set2WordsToReg32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
mov fs:[FGColor],eax ;load color
mov fs:[DestXY],ebx ;set start x,y
mov eax,10000h ;intercept, preset y extent = 1, indi-

cates X major
mov si,X1 ;x = X1
mov dx,X2 ;
sub dx,si ;dx=X2-X1
mov bx,Y1 ;
sub bx,Y2 ;dy=Y1-Y2
add bx,bx ;
mov di,bx ;2*dy
sub bx,dx ;
mov cx,bx ;error = 2*dy-dx
sub bx,dx ;2 * (dy-dx)

DXL_loop:
cmp si,X2 ;while (x < X2)
jge DXL_do_remaining ;{
inc eax ; intercept += 1;

 cmp cx,0 ; if (error <= 0)
jg DXL_greter ; {
add cx, di ; error += 2 dy;
jmp DXL_compare_done ; } else

DXL_greter: ; {
add cx,bx ; error += 2 * (dy - dx);
mov fs:[XYExtents+EXEC_CMD],eax ; draw_pixels(intercept);
mov eax,10000h ; intercept=0x10000

; //reset intercept
DXL_compare_done: ; }
 inc si ; x += 1;

jmp DXL_loop ;}
DXL_do_remaining:

cmp eax,10000h
je DXL_done ; if (intercept != 0x10000)
mov fs:[XYExtents+EXEC_CMD],eax ; draw_pixels(intercept);

DXL_done:
ret

DwarXMajorLine endp

Note: The last pixel in never drawn. Each new line has to load a start X,Y.
SM3110 Technical Reference Manual 6-77

Programmer’s Reference Si l icon
 M A G I C
Draw Y Major line

The example below describes a line drawn in the second octant. The start point is X1,Y1 and the
end point is X2,Y2 with |X2-X1| < |Y2-Y1| and X2 > X1 and Y2< Y1.

Algorithm:

y = Y1;
dx = X2 -X1; dy = Y1 - Y2;
error = 2 dx - dy;
intercept = 1; /* preset x extent = 1, indicates Y major */

while (y > Y2)
{
 intercept += 0x10000;

if (error <= 0)
{
error += 2 dx;

 } else
{
error += 2 * (dx - dy);
draw_pixels(intercept);
intercept = 1; /* preset x extent = 1, indicates Y major */

 }
y -= 1;

}
if (intercept <> 1)

draw_pixels(intercept);
6-78 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Sample code : Draw Y Major line

;fs= CmdPortSelector: selector points to the register base address

DwarYMajorLine proc near
call ClipRectangle ;set clip rectangle if necessary
WaitCMDFIFO fs, FIFO1_8TH
mov ecx,F_XP+F_YN+ CMD_LINE ;Clip on, x positive, y negative
or ecx,gClipflag ;set clip flag
mov cl,RopValue ;move ROP into low byte
mov fs:[FLAGs],ecx ;set flags register
mov eax, COLOR1 ;the draw color
Set2WordsToReg32X1,Y1,bx ;ebx=(X1,Y1), X1 in low word
mov fs:[FGColor],eax ;load color
mov fs:[DestXY],ebx ;set start x,y
mov eax,1 ;intercept, preset x extent = 1, indicates Y major
mov si,Y1 ;y = Y1
mov dx,si ;
sub dx,Y2 ;dy=Y1-Y2
mov bx,X2 ;
sub bx,X1 ;dx=X2-X1
add bx,bx ;
mov di,bx ;2*dx
sub bx,dx ;
mov cx,bx ;error = 2*dx-dy
sub bx,dx ;2 * (dx-dy)

DYL_loop:
cmp si,Y2 ;while (y > Y2)
jle DYL_do_remaining ;{
inc eax ; intercept += 1;

 cmp cx,0 ; if (error <= 0)
jg DYL_greter ; {
add cx, di ; error += 2 dx;
jmp DYL_compare_done ; } else

DYL_greter: ; {
add cx,bx ; error += 2 * (dx - dy);
mov fs:[XYExtents+EXEC_CMD],eax ; draw_pixels(intercept);
mov eax,1 ;

intercept=1 ;//reset intercept
DYL_compare_done: ; }
 dec si ; y -= 1;

jmp DYL_loop ;}
DYL_do_remaining:

cmp eax,1
je DYL_done ; if (intercept != 1)
mov fs:[XYExtents+EXEC_CMD],eax ;

draw_pixels(intercept);
DYL_done:

ret
DwarYMajorLine endp

Note: The last pixel is never drawn. Each new line has to load start X,Y.
SM3110 Technical Reference Manual 6-79

Programmer’s Reference Si l icon
 M A G I C
6.6 3D Functions
6.6.1 Overview

A 3D graphics pipeline contains two partitions, the geometry pipeline and the rasterization pipeline
(see Figure 6-8, below). The determination of feature set and the trade-off between performance
and design cost are made based on the requirements for the target market, and the computational
and I/O bandwidth requirement analysis. The analysis assures the load-balancing between a
given CPU and the graphic processor, and the performance-balancing between the rendering
engine and I/ O devices including bus and memory. Based on this analysis, the host CPU per-
forms the geometry portion and the SM3110’s 3D engine accelerates the rasterization pipeline as
shown in Figure 6-8, below.

Figure 6-8. 3D Functions Partition

Transformat ion
and Light ing

Scan
Convers ion

Per-Fragment
Operat ions

C P U S M 3 1 1 0

Geometry Pipel ine Raster izat ion Pipel ine
6-80 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.6.1.1 Feature Set

The SM3110 3D rendering engine provides high-performance rendering of 3D primitives with a
complete feature set of rendering functions:

• Primitives
• Triangle (including setup and sub-pixel displacement)
• Point
• Texturing
• On-chip texture memory
• Perspective correction
• Pixel-level mipmapping
• Filtering: nearest-neighbor, bilinear, trilinear
• Texture transparency
• Texture blending
• Flat and smooth (Gouraud) shading
• Fogging
• Z buffering
• Scissoring
• Stippling
• Alpha blending
• Dithering
• Logic operations
• Double buffering
SM3110 Technical Reference Manual 6-81

Programmer’s Reference Si l icon
 M A G I C
6.6.1.2 3D Rendering Engine

The 3D driver interfaces with the 3D engine by way of a 3D command FIFO in the frame buffer
memory, which allows decoupling of driver and rendering functions. Figure 6-9 shows the block
diagram of the 3D engine.

Figure 6-9. 3D Engine block Diagram

MIU Interface
CMD process ing
Float ing point conversion
Set state registers
Unpack str ips to l ists

Triangle List
1 W 1 R S R A M
2 complete sets of
tr iangle parameters

Triangle Edge List
2W / 2R por ts SRAM
2 sets of tr iangle edge l ists

Sort vert ices
Slope calculat ion in x and y
Sub-pixel displacement in y

Fog DDA/ Co lo r DDA
Texture blending
Fogg ing
Alpha b lending
Dithering
Logic op.
Pixel update

Texture DDA
MIU Interface
Persp. correction
Mipmapping
Texture filtering
Transparency

Z D D A
MIU Interface
Z fetching
Z test
Z update
Scissoring in x
Stippl ing

Pixe l
Upda te
F lag

32 x1

R A M 2 5 6 x 1 8

Command Data Fetch

Y loop control
DDA's in y
Sub-pixel displacement in x
Scissoring in y

Z Buffer
Fetch

Z Buffer
Update

Texture
Fetch

Back Buffer
Fetch

Back Buffer
Update

Command Decoding Unit

Triangle Setup Unit

Edge Walking Unit

Z Buffering Unit
Texture Mapping Unit

Texture Palette

Per Fragment Unit
6-82 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.6.1.3 3D Rasterization Pipeline

The figure below below shows functions within the 3D rasterization pipeline.

Figure 6-10. 3D Rasterization Pipeline

Mipmapped
Textures

Fog DDA Color DDA

Scan
Conversion

Texture
Blending

Fogging

Alpha
Blending

Dithering

Dithering

Frame
Buffer

Texture
Transparency

Texture
Filtering

Texture
DDA

Z DDA

Z Test

Scissor
Test

Stippling
SM3110 Technical Reference Manual 6-83

Programmer’s Reference Si l icon
 M A G I C
The order of rendering functions is critical to rendering accuracy and the diagram below repre-
sents the 3D pipeline.

where:

italics – means pixel may be rejected at this step

underline – means only do this step if previous tests pass

stip – stipple test

ztst – z test

tex – texture mapping

tfil – texture filtering

tmod – texture modulation with diffuse color

spec – specular color

fog – apply fog

clmp – clamp results

blnd – blend source with destination

dith – apply dithering pattern

rop – apply raster operation

zwrt – write z value to z-buffer (if enabled)

scisy, scisx – scissor in y and x

ckey – color key

(Refer to the rasterization pipeline diagram above.)

1. Scissoring in Y
Failed test = reject pixel (updating interpolants).

2. Perform z-buffer test (only set pass/fail).

3. Scissoring in X (only set pass/fail).

4. Perform stipple test (only set pass/fail).

scisy ztst scisx stip tex tfil ckey zwrt tmod spec fog clmp blnd dith rop
6-84 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
5. If previous pixel tests pass, do texture mapping, repeat for as many samples as is required by
step six.

Look up RGB texture value from q, u, v corresponding to x, y.
If the texture has an alpha channel, read the A value, otherwise set A to 1.0

6. If previous pixel tests pass, perform bi- or tri-linear filtering operation on RGBA values.

7. If previous pixel tests pass, do alpha related visibility tests.
If chroma key transparency is enabled and the RGBA texture color lies inclusively within
the chroma key range, set pass/fail for this pixel.
If ‘alpha test’ enabled, set pass/fail for pixel, based on alpha value non-zero/0

8. If previous pixel tests pass, write z value to z-buffer if z-write is enabled.

9. Modulate (see blending in a following step) texture color with diffuse color to get srcColor. If
MODULATE_ALPHA is set, do the same for the alpha channel as well. Update color interpo-
lants after this step.

10. Add specular color to srcColor. The alpha channel is not affected by this stage. This stage may
produce results greater than 1.0. Update specular color interpolants.

11. Apply RGB fog. This stage may produce results greater than 1.0

12. Clamp colors to range [0.0,1.0).

13. Alpha blend srcColor with destColor to get finalColor.

14. Convert finalColor to destination pixel format, applying dither pattern.

15. Apply raster operation.
newDest = src Rop dest.

16. Write final color to destination at x, y.
SM3110 Technical Reference Manual 6-85

Programmer’s Reference Si l icon
 M A G I C
6.6.2 3D Engine Operation
6.6.2.1 Initialization

All of the initialization of the SM3110 3D engine is done by the driver. The reason for this is partly
because the BIOS doesn’t have access to the 3D register space and partly because the driver is
more flexible for handling different initialization conditions.

Prior to activation of the 3D driver, the 2D driver has already set up 32-bit linear pointers to the 3D
register space, 3D command FIFO port and frame buffer memory. Refer to the 2D section for
more information on this procedure. 3D registers are loaded by either using the memory-mapped
byte address (minimum 16-bit reads/writes) or via the register load command in the 3D command
FIFO (see that section for more details).

On power up, most registers in the SM3110 have a predefined initial state. Refer to the SM3110
register section for more information. The driver can always return the hardware to this initial state
by toggling the reset bit in the Command Decode Unit (CDU) control register (0x0038).

Initialization consists of setting up certain of the state registers prior to do 3D rendering. Note that
as part of context creation, the driver will initialize virtually all the registers, but the registers below
are set up as part of driver initialization, prior to any 3D contexts being created. (Register
addresses below are offsets within the 3D control register space of the SM3110 local address
space. See the Section 4.2.2, 3D Control, for more details.)

The driver initializes the following registers:

For context creation, that is, prior to doing 3D rendering, it will be necessary to set up all the regis-
ters associated with the desired rendering mode. See the SM3110 register section for more infor-
mation on the meaning and syntax of these registers. These consist of the following:

CDU control +038H set to stop while initializing other regs, then start
Cmd FIFO base +198H internal memory start of command FIFO, 16KB aligned
Cmd FIFO size +1C8H size of command FIFO in bytes, 16KB aligned
Cmd FIFO write ptr +1C0H set to 0
Cmd FIFO read ptr +1C4H set to 0
Texel base +0E6H set to 0 (see texture loading for how texture addresses

set up)
Palette index offset +0E4H set to 0
Texture loading base +1E8H set to 0
Texture loading end +1ECH set to 0
DRAM control +1B9H set according to DRAM parameters (but note that texture

cache invalidate bit is used during rendering)
Internal memory timing +1BAH set according to DRAM parameters
Address mapping +1A0H

1A7H
allows memory (in 2MB increments) to be marked as
internal/external (n/a for SM3110) or relocated. driver
currently direct maps memory.
6-86 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Registers applicable to 3D rendering context (offset within 3D Control region)

Modes
Vertex Format +000H defines primitives to be rendered
Control +0B8H enables for scissors, texture, perspective correc

tion, mipmapping, subpixel displacement, specu
lar, fog and flat shading

Texture
Texture Format +0E0H format of texture
Texture Map Size +0E2H log2 of texture height and width
Texture Wrap +0F4H texture wrap mode (clamp, repeat, mirror)
Texture Interpolation +0F8H alpha test enable, interpolation in uv space (near

est neighbor, bilinear) and between mipmap lev-
els (nearest neighbor, linear)

Texture Transparency Color +0C0H

+0C4H

range of colors for texture transparency

Texture Transparency Enable +134H enables texture transparency
Texture LOD Table +580H -

+5A8H

see Texture Loading section for details

Texture Blend +150H enable, alpha and color blend modes
Texture Palette +C00H-

+FFCH

256 entry texture palette

Visibility
Viewport Limits +080H

+082H

+100H

+102H

viewport top, bottom, left and right edges

Z Buffering +138H enable, write enable and z test function
Stipple +120H enable and x,y pattern offsets
Stipple Mask +400H -

+47CH

32x32 bit stipple mask

Buffers
Z Buffer Stride +130H stride of z buffer
Back Buffer Stride +170H write enable and stride
Pixel Format +174H format of back buffer
Back Buffer Base Address +180H back buffer address relative to frame buffer start
Z-Buffer Base Address +188H Z-buffer address relative to frame buffer start
Pixel Characteristics
Fog Color +158H RGB fog color
Alpha Blend +15CH enable, source and destination blend controls
Dither Enable +160H enables dither
Logic Op +164H enable and logic op
SM3110 Technical Reference Manual 6-87

Programmer’s Reference Si l icon
 M A G I C
6.6.2.2 3D Command FIFO

The primary interface of the driver with the 3D hardware is through the 3D command FIFO. This
includes loading of state registers, primitive commands, synchronization and DMA. Using the
command FIFO serializes processing of commands and allows for decoupling of driver and ren-
dering processing. The actual command FIFO is allocated in frame buffer memory (see Initializa-
tion), but is written to via a port, which is a fixed offset relative to the Control Address Space of the
SM3110. Any commands written to the 4KB 3D command FIFO port are added to the next avail-
able location in the 3D command FIFO. Thus, all the FIFO management is handled by the hard-
ware. A diagram of the operation of the 3D command FIFO is shown in the figure below.

Figure 6-11. 3D Command FIFO

f rom FIFO top

to FIFO bottom

SM3110 address space

Driver

CPU

3D FIFO Port

Command
Decode Unit

(CDU)

3D Command
FIFOCommand

frame buffer
6-88 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
The driver only needs to ensure that sufficient FIFO entries are available prior to writing. This is
done as shown in the following code sample:

// Read fast status register
regVal = ReadRegister(0x1F0);
// now compute remaining DWORDS in FIFO
remDWORDS = (FIFOSIZE – regVal.fifoStatus + 255)/sizeof(DWORD)

where:

FIFOSIZE – total size of 3D command FIFO in bytes

255 – is added because the read is only accurate to 256 byte units

It is recommended that the reads to the FIFO status be minimized by keeping track of the available
DWORDS in a local variable and only reading again when this value is depleted.

When writing to the 3D command FIFO port, normal considerations regarding optimal PCI burst
lengths should be kept in mind. That is, it may be more efficient to buffer a series of commands in
CPU memory and then write them all at once.

It should also be noted that the SM3110 hardware reads the FIFO on 128-bit (4 DWORD) bound-
aries, which means that alignment must be kept in mind to ensure that the FIFO is able to be emp-
tied, for example, on frame boundaries. In order to do this, 4 NOP command DWORDs should be
written to the FIFO at end of frame. This will ensure that no non-NOP commands are left in the
FIFO (it doesn’t matter if NOP commands are left there).
SM3110 Technical Reference Manual 6-89

Programmer’s Reference Si l icon
 M A G I C
6.6.3 3D Command Format
The command/parameter format consists of a sequence of 32-bit doublewords:

Figure 6-12. 3D Command Formats

31 28 2322 00
Vertex
Indices Trian g le Stri p /Fan

24 1615 080727 2120 171819 141312 091110 060504030201

31 28 00

Point List

27

31 28 00

Co py Memor y

27

Source Address

Count

0708

Len g th
(By tes) 00

00

Destination Address 00

Source

2 3 4 5 10 11 12 13

24 1615 010223

Dest

31 28 00

Load State Re g ister

27

DataReg ister Index
(By tes)

0

151617

31 28 00

Sy nc

27 1516

RB Unit Bus y
Flags

Driver
Flags

X7X6SF

2625

14 15

31 28 00

Trian g le List

27

Count

0708

1H

2H

3H

4H

E H

F H

31 28 00

NOP Command0H

31 28 00

Start Motion Com p .D H
6-90 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.6.4 3D Primitive Commands

The SM3110 handles 3 types of primitives: triangle lists, triangle strips/fans and point lists. Lines
are not directly supported but may be constructed in software using triangles. One significant con-
sideration is that the SM3110 requires the extent of primitives to be less than 127 in x and y. Prim-
itives which exceed this limit, must be subdivided in software. Also, backface culling and clipping
must be done in software, as this is not done in the SM3110. Vertex order is not important.

All parameters/coordinates are represented in floating point using IEEE single precision format
(1.8.23). An optional fixed point (11.21) format is also provided. All color/pixel data is represented
as integer 8.8.8.8.

Figure 6-13. Parameter Formats (in Memory)

31:28 Command
Value Semantics

0H NOP.
1H Triangle Strip/Fan.
2H Triangle List.
3H Point List.
4H Copy Memory.
5-CH Reserved.
DH Start Motion Compensation Command
EH Control/Sync/control field in immediate data field.
FH Load State Register.

31 30 23 22 00

S
Exponent
 (offset)

Fraction IEEE Floating Point

31 00

Integer Fixed Point 0.11.21

21

Fraction

31 24 16 15 00

Alpha Integer 8.8.8.8

23 08 07

Red Green Blue

20
SM3110 Technical Reference Manual 6-91

Programmer’s Reference Si l icon
 M A G I C

+

6.6.4.1 Triangle Strip/Fan

Up to 15 triangles may be specified in one triangle strip/fan list. The last valid vertex is indicated
by specifying 0 in the successive vertex number field.

The offset of the first parameter of each successive vertex is

(3+n- 2)×SizeVERTEX_PARAMETER_LIST+4 ,

where n is the triangle number (starting from 1).

Field Function

31:28 Command. 1H. The first triangle is implied and specified by the first three vertices.

27:26

25:24

23:22

21:20

19:18

17:16

15:14

13:12

11:10

09:08

07:06

05:04

03:02

01:00

Vertex Index. Specifies which vertex should be replaced in a triangle strip or fan for the

 2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

13th

14th

15th triangle .
Value Semantics

1-3 Vertex Number.
0 End.

4 1st Vertex of 1st triangle.
2nd Vertex of 1st triangle.
3rd Vertex of 1st triangle.
Successive vertices.
6-92 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.6.4.2 Triangle List

6.6.4.3 Point List

Vertices can contain different numbers of elements based on the setting of the bits in the vertex
format register (see 4.2.2.1, Vertex Format). The table below shows valid combinations:

Some special considerations should be made with regard to some of the primitive characteristics.
These are noted below:

flat shading – SM3110 implements this by assuming that the color and alpha are the same in all 3
vertices and then not interpolating between them.

fog – the fog values in the vertices are treated as though a value of 0x00 is no fog and a value of
0xFF is fog color only

z scaling – the range of z values expected by the hardware is from 0 to 65535.99999.

alpha test – the SM3110 doesn’t support a full alpha test, but it does support the alpha != zero case
by setting the bit in the texture interpolation control register (+0F8H).

texture uv and wrap – the SM3110 has 10 integer bits for u,v addressing. This includes the texture
width/height (which must be a power of 2, but not necessarily square) and any wrap bits.
Thus, a 64-texel wide texture can have a wrap of 16 in the u direction (and similarly for v).
Note that u,v coordinates supplied with primitives must be pre-multiplied by the texture
width/height.

Field Function

31:28 Command. 2H.
27:08 Reserved.
07:00 Number of Triangles.

Field Function

31:28 Command. 3H.
27:08 Reserved.
07:00 Number of Points.

texture type fog specular coordinate color
x xy,xyz
y xy,xyz
z xyz
color rgb,argb
specular fog specular rgb
u uv,uvwmip
v uv,uvwmip
u/w uvw,uvwmip
v/w uvw,uvwmip
rhw uvw,uvwmip
SM3110 Technical Reference Manual 6-93

Programmer’s Reference Si l icon
 M A G I C
6.6.5 Copy Memory and DMA Command

The SM3110 3D engine has DMA capability in the form of the copy memory command (0x4) for
the 3D command FIFO. This consists of a source and destination code and addresses, and a
length in doublewords. Some useful ways in which this command can be used include:

load local memory from PCI or AGP space (e.g., for texture DMA)

pattern fill local memory from register (does 128-bit operations)

set driver value in PCI or AGP space (by loading value in fill register, then transferring to
local memory and from local memory to PCI or AGP space) for flagging when command
FIFO operations are complete

The table below specifies the source and destination addresses and transfer length for the internal
DMA. All internal addresses are 23 bits relative to the PCI base address, all external (AGP/PCI)
addresses are linear 32 bits.

field function

+0 31:28 Command. 4H.
27:24 Source Flags.
23:20 Destination Flags.

value semantics

0H Internal non-aligned. Within SM3110 internal embedded DRAM.
1H Internal, aligned to natural 16B boundary.
2H State Registers except for Palette. Destination only .
3H Palette. Used to load palette RAM, 18b per clock. Destination only .
4H AGP/PCI Linear.
5H Reserved.
6H 32b Fill Register. Source only . Used to fill memory.
7H Internal. Translate (texture) addresses. Destination only .

8-FH Reserved.
bits field

19 Transfer Request. Must Be One for transfer to occur.
18:00 Length in doublewords-1

+4 31:00 Starting Source Address
+8 31:00 Starting Destination Address.
6-94 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
When the palette is the destination, bits [09:02] of the destination address specify the palette
index. Bits [01:00] specify the bytes within the palette and should be set to 0, byte 0 is Blue, byte
1 is Green and byte 2 is Red, byte 3 is not used. The source (internal or external) and destination
palette addresses must be doubleword aligned. The matrix of source and destination address
spaces is shown below:

Table 6-3. DMA Transfer Source/Destination Matrix

Restrictions:

Transfers performed between Internal Aligned source and destination will be done at a 16
bytes per transfer.

Transfers between the 32-bit Fill Register and Internal Aligned destination will be done at 16
bytes per transfer.

The palette RAM cannot be the destination addressed through the State Register space; it
must be accessed only through its own dedicated space.

All other transfers are performed at 4 bytes per transfer.

When setting up DMA operations in the 3D command FIFO, care should be taken with regard to
other commands in the FIFO. Since there is only one DMA engine, each subsequent DMA com-
mand will wait until the previous DMA command is complete; that’s not true for other, non-DMA
commands. It may be necessary to put a sync command in the FIFO after the DMA command to
wait until the DMA engine is idle before processing subsequent commands in the FIFO. For
example, this would be the case if a DMA was being used to load a texture and the next command
in the FIFO was a primitive which used the texture. See the synchronization command section for
information on how this is handled.

Note that when DMAing in PCI space, physical addresses will be needed in the address field. If a
transfer larger than a physical page (4Kbyte) is desired, simply use multiple DMA commands. If it
is necessary to wait for this chain of DMAs to be done, it is only necessary to put a sync command
after the last DMA. This could be used for texture loading, as described in the section on texture
loading.

Source
Destination 0-Internal

Non-aligned
1-Internal
Aligned

4-External
AGP/PCI

6-Fill
Register

0 - Internal Non-aligned Yes No Yes Yes
1 - Internal Aligned No Yes No Yes
2 - State Registers Yes No No No
3 - Palette RAM Yes No No No
4 - AGP/PCI No No No No
7 - Internal Texture Yes No Yes No
SM3110 Technical Reference Manual 6-95

Programmer’s Reference Si l icon
 M A G I C
6.6.6 Synchronization Command

Synchronization is performed by the appropriate use of the Sync command. A conditional wait is
performed on specific conditions set by internal and external hardware or driver software. When
the conditions are met the wait terminates and command interpretation and execution resumes.
The driver specifies a set of conditional flags that may be tested. A mask function performs the fol-
lowing operation:

RESULT = ORi=23 to 00 [Maski AND Flagi]

When the condition becomes “true” the wait terminates.

The wait condition is defined as follows

 condition = DrvFlg3 & cmdreg[19] |

 DrvFlg2 & cmdreg[18) |

 Sigl2D & cmdreg[17] |

 Sync2D & cmdreg[16] |

 (fc_rbusy | fc_wbusy) & cmdreg[11] |

 mcmem_busy & cmdreg[10] |

 busy & cmdreg[9] |

 bd_pipe_busy_m & cmdreg[7] |

 fd_pipe_busy_m & cmdreg[5] |

 zd_pipe_busy_m & cmdreg[4] |

 (td_ag_pipe_busy_m | td_tp_pipe_busy_m) & cmdreg[3] |

 ed_pipe_busy_m & cmdreg[2] |

 sd_pipe_busy_m & cmdreg[1] |

 cdu_busy & cmdreg[0];

 CDU stall = cmdreg[25] & (cmdreg[24] & ~condition or ~cmdreg[24] & condition)

Some of the useful events are covered in the sections on DMA, 2D/3D synchronization and perfor-
mance issues. In addition to these, it is possible to sync on driver flags which are set in registers
0x024 and 0x026, or on external event pins.
6-96 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Synchronization Command EH

Field Function

+0 31:28 Command. EH.
27:26 Reserved.

25 Function.
Value Semantics

0 NOP. continue command interpretation.
1 Sync: wait until condition, then continue command interpretation.

24 Condition Sense.
Value Semantics

0 Not Result.
1 Result.

Field Function

23:20 Reserved.
19:18 DrvFlags. Correspond to the Driver Flags in CDU Register bytes 027H - 024H

Value Semantics

0 Driver Flag Byte Bit 0 is ‘0’.
1 Driver Flag Byte Bit 0 is ‘1’.

Field Function

17 2D Signal
Value Semantics

0 Signal to 2D is low
1 Signal to 2D is high

Field Function

16 2D Synchronization
Value Semantics

0 2D has not signalled 3D
1 2D has signalled 3D
SM3110 Technical Reference Manual 6-97

Programmer’s Reference Si l icon
 M A G I C
Synchronization Command EH continued

Field Function

15:12 Reserved.
11 Format Conversion.
10 Motion Compensation.

09:00 Hardware Status Mask.
09 Busy.
08 Running.
07 Direct Memory Access.
06 Reserved.
05 Per Fragment Unit.
04 Z-Buffering Unit.
03 Texture Mapping Unit.
02 Edge Walking Unit.
01 Triangle Setup Unit.
00 Command Decode Unit.

Value Semantics

0 Not Busy.
1 Busy.
6-98 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.6.7 Load State Register Command

Register loading is supported by the load state register command. Using the 3D command FIFO
to load registers is primarily useful because it allows serialization of state with primitives. The for-
mat is shown below.

This command is used to load state and control registers, and internal arrays.

Field Function

+0 31:28 Command. FH.
27:16 Register Index. Bit [16] must be 0.
15:00 Data
SM3110 Technical Reference Manual 6-99

Programmer’s Reference Si l icon
 M A G I C
6.6.8 Texture Loading

The SM3110 requires textures to be stored in an optimized format in frame buffer memory. A num-
ber of texture formats are supported (see 6.6.10, Buffer Issues) and mipmaps are supported, with
the restriction that the mipmaps (as well as the start of non-mipmapped textures) begin on 2KB
byte boundaries (although sharing of lower level mipmaps within a single 2KB block is possible, as
described below).

The basic mechanism for loading textures involves setting up certain registers and then transfer-
ring the texture data, either by memory-mapped write to frame buffer memory, or via DMA (see
DMA section). This is done using the Load State Register command. The following registers must
be set up for texture loading:

Table 6-4. Texture Loading Registers

Table 6-5. Texture Loading Register Values

texel size 0x1E0 texture format
texture base 0x1E8 base address for texture translation (s/b 0)
texture end 0x1EC end address for texture translation (s/b 4MB)
tex param (shift) 0x1E4 max(0, log2u-bsxe)

where:

log2u is log2 of texture width

bsxe is based on texture format bit width (see Table 6-5)
tex param (row V shift) 0x1E4 max(0,(log2u - log2uoffset)) + rowVShiftOffset

where:

log2u is log2 of texture width

log2uoffset is based on texture format bit width (see table)

rowVShiftOffset is based on texture format bit width
(see Table 6-5)

tex param (U page offset) 0x1E4 offset from start of page (normally 0)
tex param (V page offset) 0x1E4 offset from start of page (normally 0)
tex param (page address) 0x1E4 destination address in 2K byte units

1 bit 2 bit 4 bit 8 bit 16 bit
bsxe 5 4 3 2 1
log2uoffset 7 7 6 6 5
rowVShiftOffset 0 1 1 2 2
6-100 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
When loading textures, note that the actual destination address goes in the texture parameters’
page address, but the destination for memory-mapped write or DMA purposes should always be
the start of frame buffer memory. This allows access to the entire 4MB internal memory space in
the SM3110. The address translation done by the SM3110 loading will then translate and correctly
load anything sent between its base and end addresses (which is why they should be 0 and 4MB,
respectively). Normally, textures (or mipmap levels of textures) will start at the beginning of the
2KB page, but in some cases, the driver will share the 2KB page of the lowest level mipmap which
doesn’t take an entire page. In this case, the u and v page offsets can be used to specify the start-
ing point.

When primitives are rendered using textures, similar information is required to be loaded into the
state registers, including texel format (0x0e0) and a similar value to the texture parameter register
above, but with an entry for each mipmap level (texture LOD table, 0x580-0x5a8). In addition, a
texture size register is required (0xe2), with the log2 values of the texture width (u) and height (v).

It is also necessary to be aware of the texture cache invalidate bit (0x1b9), which will need to be
toggled if the texture cache contents are no longer valid. This could happen if the contents of an
existing texture are reloaded.

Texture palettes are loaded using the load state register 3D command FIFO command. For
SM3110, texture palette colors are 6 bits each (R,G,B), so an 18-bit data field is used for this reg-
ister load command (vs. other commands, which have a 16-bit data field).
SM3110 Technical Reference Manual 6-101

Programmer’s Reference Si l icon
 M A G I C
6.6.9 2D/3D synchronization

Because the SM3110 has separate FIFOs for 2D and 3D, a mechanism is provided to ensure syn-
chronization between the two. The capability of adding a synchronization command to either
FIFO, which waits for a signal from the other is available. The basic mechanism is as follows:

// To have 2D wait on 3D, add the following to the 2D command FIFO:
2D command 0xd

// To have 2D signal 3D, add the following to the 2D command FIFO:
2D command 0xc

// To have 3D wait on 2D, add the following to the 3D command FIFO:
3D command 0xe, sync2D = 1, function = 1, sense = 1
load state register 0x20 with 0 // this is to clear 2D signal after rcvd

// To have 3D signal 2D, add the following to the 3D command FIFO:
load state register 0x22 with 1
load state register 0x22 with 0 // this is to clear 3D signal after sent

These synchronization commands are useful for events which are anticipated, for example on a
once-per-frame basis. If 2D commands were used to clear the z-buffer (actually there are more
efficient 3D commands for this, see DMA section), the 2D blt command could be followed by a
signal3D command in the 2D command FIFO and a waiton2D in the 3D command FIFO. That
way, no 3D rendering commands would be processed until the z-buffer BLT was complete.

More often, it is necessary to ensure that one or the other engine is inactive before proceeding. In
this case, it is necessary to wait for the corresponding FIFO to be empty, as shown below:

// To wait for 3D engine to be idle and FIFO empty:
flush 3D FIFO // add 4 null commands to FIFO, see 3D command FIFO desc.
poll 3D engine busy bit of register 0x1F0 until clear

// To wait for 2D engine to be idle and FIFO empty:
poll 2D engine busy bit of register 0x8F0 until clear
6-102 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.6.10 Buffer Issues

6.6.10.1 Buffer Alignment

The following table shows required alignments for 3D buffers on SM3110:

6.6.10.2 Buffer Formats

The following table shows available formats for buffers on SM3110:

Buffer Alignment Pitch Alignment
front buffer/back buffer 4K bytes 16 pixels
z-buffer 4K bytes 16 pixels
3D command FIFO 16K bytes n/a
textures 2K bytes n/a

Buffer Formats
front buffer/back buffer RGB0555, RGB565, ARGB4444, ARGB1555, RGB888,

ARGB8888
z-buffer 16 bit
textures CLUT1, CLUT2, CLUT4, CLUT8, RGB0555, RGB565, ARGB4444,

ARGB1555
SM3110 Technical Reference Manual 6-103

Programmer’s Reference Si l icon
 M A G I C
6.6.11 Performance Issues

A number of the performance issues in the SM3110 3D engine are related to general ‘good prac-
tice’ for 3D applications. This includes minimizing state changes and minimizing texture loading.
For state changes, the 3D engine only has one set of state registers, so it is necessary to make
sure the 3D pipeline is idle before modifying the state registers. This is done by adding the follow-
ing command to the 3D command FIFO:

// To wait for 3D pipeline idle
control/sync command with sync bit and bits for Per Fragment Unit, Z-Buffering
Unit, Texture Mapping Unit, Edge Walking Unit, Triangle Setup Unit and Command
Decode Unit set

Another bottleneck could come from the fact that the 3D engine will stall if it detects that the
bounding boxes for 2 triangles overlap, in order to prevent read-after-write consistency errors.
This function can be enabled under software control (register 0x004). If it is known that 2 triangles
will not overlap (for example in a strip/fan) this function should be turned off.
6-104 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.7 LCD Panel Programming

The SM3110 supports an LCD flat panel display. The supported panel sizes are 640x480,
800x600, 1024x768, and 1280x1024. Both DSTN and TFT panels with different color bits are also
supported. The following block diagram shows the display subsystem of SM3110.

Figure 6-14. LCD Display Subsystem

6.7.1 LCD Flat Panel Registers

The following registers are LCD flat panel related. These are offsets within the 2D Control
Address (see Section 4.2.1, 2D Control).

LCD Type and Miscellaneous - +510h

Bits 2-0 is the panel stretch ratio used for standard VGA modes. Values must be found using trial
and error. When stretching is not needed, 0 is programmed.

Bits 7-4 define the panel type. The SM3110 family currently supports 7 types of panels.

Other bits need to be programmed according to the data sheet of the particular LCD panel.

LCD Image Compensation – +504h

Bit 7 and bit 5 enable or disable stretching for vertical and horizontal, respectively. This register will
take effect only in standard VGA modes.

Dithering and Frame rate Modulation - +514h

Bit 7 and 6 define the number of frames used for frame rate modulation. More frames tend to result
in better quality. Bits 5-3 control the dithering and are used if the color depth of the current mode is
greater than that of the panel. Again, different values should be tried out to determine the best dis-
play quality for each particular panel.

F rame
Buffer

V G A

E C R T C

Registers
+500h to

+540h

LCD Panel

LCD Control ler

DF4
bit 0
SM3110 Technical Reference Manual 6-105

Programmer’s Reference Si l icon
 M A G I C
DSTN Buffer Starting Address – +520h

When a DSTN panel is selected, some additional memory in the frame buffer is required to store a
half-frame of the panel display data. This register specifies the starting address from the beginning
of the frame buffer. The formula for the size required is as follows.

Size = Panel Width * Panel Height * 31 / 82 / 23

1. DSTN is 3 bits per pixel.

2. There are 8 bits per byte.

3. Half frame.

LCD CRTC Registers – +530h … +53Ch

These registers contain the same values from VGA CRTC or ECRTC except for register 534 bits
8- 0 and register 53C bits 10-0, which are panel width and height, respectively. Note that the hori-
zontal parameters are counted by characters, that is, they need to be divided by 8.

LCD Adjustment Control – +540h

This register is used to fine-tune the display image size and centering. Each panel has different
characteristics and needs to be tuned to get the best display image size and positioning.

ECRTC Stretch Register – +EE4h

This register is used to stretch the display image under enhanced mode. Each value represents a
different stretching ratio. There is a small, fixed set of stretch ratios defined for vertical and hori-
zontal stretching. The closest value is picked to achieve the maximum stretch ratio, i.e., the larg-
est possible image for the given panel resolution.
6-106 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.7.1.1 Initialization

During power up, only register 510 (LCD Type and Misc. Register) needs to be set according to
the panel. If the panel is DSTN, register 520 (Base Address Register) needs to be programmed,
too. Sufficient frame buffer memory needs to be reserved for DSTN panel to display properly.

6.7.1.2 Set to Desired Mode

Setting to a desired mode requires programming LCD-related registers as well as VGA CRTC or
ECRTC registers. DCLK (dot clock – register 90, 91,and 92) needs to be programmed accordingly,
too.

6.7.1.3 Standard VGA Modes

To set to standard VGA modes, the standard VGA CRTC registers are programmed as usual.
Registers +530h to +53Ch need to be programmed according to the panel size. Use register 504
to enable or disable stretching. If stretching is disabled, the display image will be centered by
default. Also use registers 530 to 540 to adjust the display image to desired position.

6.7.1.4 Enhanced Modes

No matter which enhanced mode, the timing parameters of the panel resolution have to be pro-
grammed into ECRTC registers as well as registers 530 to 53C. Refresh rate has to be 60Hz. For
example, a panel with size of 1024x768 needs to use the parameters from the 1024x768 60Hz
portion of the table. Any mode with resolutions higher than the panel size can’t be set.

To center the display image, view port registers (E30 to E34) need to be programmed by the fol-
lowing formula:

View port start = (panel size – real resolution) / 2

View port end = view port start + real resolution

To stretch the display image, register 504 has no effect. Instead, register EE4 is used. The follow-
ing tables list all the possible stretch ratios to be programmed.
SM3110 Technical Reference Manual 6-107

Programmer’s Reference Si l icon
 M A G I C
Table 6-6. Horizontal Stretch Ratio

Table 6-7. Vertical Stretch Ratio

For some resolutions, it is not possible to stretch to the exact panel size. In this case, the closest
ratio is picked. It is still necessary to program viewport registers to center the image after stretch-
ing. Again, registers 530 to 540 can be used to fine-tune the display image to the desired position.

Mode Width Panel Width Ratio Result Width Program Value
640 800 4 -> 5 800 3
640 1024 5 -> 8 1024 4
720 1024 3 -> 4 960 2
800 1024 25 -> 32 1024 7
640 1280 1 -> 2 1280 1
720 1280 75 -> 128 1230 8
800 1280 5 -> 8 1280 4
1024 1280 4 -> 5 1280 3

Mode Height Panel Height Ratio Result Height Program Value
400 600 3 -> 4 533 2
480 600 4 -> 5 600 3
400 768 75 -> 128 682 8
480 768 5 -> 8 768 4
600 768 25 -> 32 768 4
400 1024 15 -> 32 853 5
480 1024 15 -> 32 1024 5
600 1024 75 -> 128 1024 8
768 1024 3 -> 4 1024 2
6-108 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.7.1.5 Set Mode Sequence

The following describes the sequence of set mode:

Turn off screen through sequence register – 3C4 index 1 bit 5
If(Standard VGA Mode)

{
Set standard VGA registers – 3C4/5, 3D4/5, 3C0/1, 3CE/F, etc. according to
the mode
Initialize palette if necessary – 3C8, 3C9
Turn on or off stretching - 504
}

else// Enhanced mode
{
Disable ECRTC0 – program 0 to DF4
Define a surface for display – A00…AF0, A04…AF4
Program channel surface index register – B34
Program display format – D30
Program enhanced dot clock – 090, 091, 092
Put correct timing parameters into ECRTC registers - E80… E94
Program display view port registers – E30…E34
Initialize palette if necessary – 3C8, 3C9
Program stretch register according to Table 6-6 and Table 6-7 – EE4
Enable ECRTC0 – Program 5 to DF4
}

Program LCD dithering register – 514
Program LCD timing registers – 530…53C
Use LCD Adjustment Control Register to center the display image – 540
SM3110 Technical Reference Manual 6-109

Programmer’s Reference Si l icon
 M A G I C
6.8 Dual View

6.8.1 Overview

The SM3110 supports two display subsystems. They can be set up to display the same content
from the same frame buffer location. This is called simultaneous view. They can also be set up to
display the same or different portions of frame buffer with different refresh rates and color depths.
This is called dual view. (Support for dual view is provided partly by the SM3110 hardware and
partly by the host operating system; if the operating system does not allow a single graphics chip
to drive two displays, this feature is not available.) The following diagram shows the relationship of
these two display subsystems.

Figure 6-15. Dual View Mechanism

6.8.2 Enabling Second Display

Enabling the second display involves the following registers:

Second Dot Clock – 1090, 1091, 1092

Correct clock rate needs to be set for different modes and refresh rates.

Surface/Channel/Format registers – A00…AF0, B84, 1D30

A different surface memory has to be selected and programmed. Channel index register B84 has
to be programmed to the selected surface index. Also register 1D30 (display channel format)
needs to be programmed to the correct format according to the mode.

Display 0 and 1 control registers – DF4 and 1DF4

Set bit 4 of DF4 to 1 to hook the second display output to ECRTC1. Also set 1DF4 to 5 to enable
ECRTC1.

Frame
Buffer

V G A

E C R T C 0

E C R T C 1

L C D
Panel

C R T
6-110 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Double Scan and Sync Polarity Registers – 1DF5, 1DF6

These two registers control both horizontal and vertical double scan and polarity according to each
mode.

ECRTC1 View Port and Timing registers – 1E00…1E94

ECRTC1 supports only CRT, so no LCD consideration is involved. These registers can be set to
different resolution and refresh rates.

6.8.2.1 Enable Simultaneous View

Bit 4 of Display 0 Control Register (DF4) enables dual view. Set it to 0 will enable simultaneous
view. Everything displaying on the first display will show up on the second display, too.

6.8.2.2 Enable Dual View

The following sequence will enable dual view:

Set to simultaneous view – turn off DF4 bit 4
Disable ECRTC1 – program 0 to 1DF4
Define a surface – A00…AF0, A04…AF4
Program channel surface index register – B84
Program second display format – 1D30
Program second dot clock – 1090, 1091, 1092
Put correct timing parameters into ECRTC registers - 1E80… 1E94
Program second display view port registers – 1E30…1E34
Enable ECRTC1 – Program 5 to 1DF4
Enable dual view – turn on DF4 bit 4
SM3110 Technical Reference Manual 6-111

Programmer’s Reference Si l icon
 M A G I C
6.9 Motion Compensation

The SM3110 supports Motion Compensation (MC) hardware acceleration when displaying MPEG-
2 video data. While the graphics chip is performing motion compensation, the rest of video decod-
ing (variable length decoding, inverse scan, inverse quantization and Inverse Discrete Cosine
Transform (IDCT)) is done by a software client (e.g., SoftDVD®).

6.9.1 Overview

MPEG-2 uses three kinds of picture storage methods. Intra (I frames), Predicted (P frames) and
Bi-directional (B frames). Intra frames are frames coded as standalone images, very much like
JPEG pictures. They allow random access points within a video steam and create a reference
frame from which other frames are built. In general, an I frame will occur around twice a second.
Predicted frames contain motion vectors describing the difference from the closest previous I
frame or P frame. This forward prediction allows for greater compression than with I frames. Bi-
directional frames are like P frames in that they use motion vectors, but with B frames, motion vec-
tors are generated by looking both forward and backward. This forward and backward referencing
allow B frames to have the greatest compression ratio. Figure 6-16 shows the data flow during
this process.

Figure 6-16. Motion Compensation Dataflow

M P E G
Sof tware

Client

Direct
Draw

H
A
L

SM3110

Mot ion
Compensat ion

Core

Sys tem Memory

D M C M

C o m m a n d s

IDCT Data

F rame
Buffer

I

B

P

6-112 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Microsoft’s DirectDraw is used as the interface between the MPEG software client and the motion
compensation core. The block diagram shown above illustrates the data flow. The client and the
driver communicate following the steps shown below.

 Client Driver

1 Direct Show - Tell driver to create surface. Create Surface

2 Direct Show - Will lock/unlock the surface Fill data structure

3 Decoder - Tell Driver what slot for decode

4 Decoder - Lock, Tells what surface to display Display Slot

5 Decoder - Goto 3
SM3110 Technical Reference Manual 6-113

Programmer’s Reference Si l icon
 M A G I C
6.9.2 Block Diagram

To use the integrated MC core, the MC driver first ensures that the MC subsystem is idle by pro-
gramming the status registers. The driver writes the MC commands and immediate data into the
3D command/parameter FIFO. The MC subsystem is returned to normal processing mode by
issuing an End of Stream MC command. These steps are explained in detail in the following sec-
tions. Figure 6-17 shows the MC block diagram of the SM3110.

.

Figure 6-17. Motion Compensation Block Diagram

Memory Bus

Data Buffer Data Buffer

Data Parser

Quadri l inear
Filter

C o m m a n d
Decode Uni t

Format
Converter

Block data

Vector
Commands

Work ing
Buffer 0

Work ing
Buffer 1

Work ing
Buffer 2

Display
Buffer 0

Display
Buffer 1

Embedded Memory

Mot ion Compensat ion module
6-114 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.9.3 Motion Compensation Client Commands
Motion Compensation is a “back-end” process which is part of the overall MPEG-2 decoding
model. The “front-end” process includes parsing the bitstream and reconstructing IDCT data. The
interface between the front-end and the MC back-end will include the command stream. Data can
be interleaved in such a way that the command comes first, followed by any IDCT data required by
it, followed by the next command, etc.

6.9.3.1 DMCM Commands

DMCM (dwCommand field in the DMCM structure) is a 4CC command code which is set by the
client (SoftDVD). It determines which action the DDraw driver will take on Unlock. There are two
commands available in this implementation.

//--------------- COMMANDS ----------------------
#define DMCM_CMD_NONE 0
#define DMCM_CMD_DISPLAY 2

The default command is DMCM_CMD_NONE - do nothing. It is used when client locks surface
just to check driver’s capabilities, version number or current state.

The other command is: DMCM_CMD_DISPLAY - new frame has to be shown.

These commands are sent to the MC core through the Command Decode Unit (CDU) from the 3D
command FIFO.
SM3110 Technical Reference Manual 6-115

Programmer’s Reference Si l icon
 M A G I C
6.9.3.2 DMCM surface allocation

The DMCM DDraw surface is an interface for hardware-assisted MPEG motion compensation
using Silicon Magic's SM3110 graphics chips. The DirectShow client (SoftDVD) passes to the
DDraw driver motion vectors, coefficient data (the output of IDCT) and control data on a frame by
frame basis.

Memory is allocated for the DirectDraw motion compensation surface (DMCM) structure. The def-
inition for this interface structure is given below.

//--------------- DMCM COMMANDS ------------------
// Commands for DDraw
#ifndef dmcm_h
#define dmcm_h
#define DMCM_CMD_NONE 0
#define DMCM_CMD_DISPLAY 2

typedef struct MCSiMagicBeginData_TAG

{
 BYTE PictureStructure;
 BYTE PictureCodingType;
 BYTE TopFieldFirst;
 int ForwardRefSlot;
 int BackwardRefSlot;
 int DestinationSlot;
} MCSiMagicBeginData;

typedef struct MCSiMagicMacroBlk_TAG
{
 int hOffset; // upper left macroblock coordinates in pels
 int vOffset; // upper left macroblock coordinates in scanlines
 BYTE DCTType; // Field DCT or Frame DCT
 BYTE codedBlockPattern; // Coded Block Pattern
 BYTE overflowCodedBlockPattern; // Overflow CodedBlock Pattern
 BYTE motionType;
 int PMV[2][2][2]; // contains motion vectors in half pel units
 int motionFieldSelect[2][2]; // Motion
 int macroblockType;
 LPBYTE *lpIDCTData;
 LPBYTE *lpOverflowData;
} MCSiMagicMacroBlk;
6-116 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
typedef struct
{
 struct
 {
 PBYTE pIDCTData; // pointer to IDCT data buffers
 PBYTE pYBuffer; // pointer to Y plane for I-frame
 PBYTE pUBuffer; // pointer to U plane for I-frame
 PBYTE pVBuffer; // pointer to V plane for I-frame
 UINT uPitch; // pitch for Y in frame buffer; half of this for UV
 UINT uWaitTime; // time to sleep in ms.
 LPVOID lpfStartDecodeDriverFunction; // Called at start of decode
 LPVOID lpfEndDecodeDriverFunction; // Called at end of decode

 LPVOID lpfProcessMBDriverFunction; // Process Macroblock Function
 DWORD dwIntstanceData; //value to be passed back in parameter of

the *lpfStartNewDecodeDriverFunction
 }
 DriverData; // initialized by DDraw upon surface LOCK

 struct
 {
 DWORD dwCmd; // DMCM command (display)

 DWORD dwTaskType; // DMCM command (display)
 DWORD dwDisplayTaskType; // DMCM command (display)
 int dwDecodeBuffIndex;
 DWORD dwDecodeTaskCount;

 DWORD dwDataSize; // Size of IDCT data to transfer
 DWORD dwFrameType; // Type of Frame (1:I, 2:P, 3:B)
 DWORD dwSlotNumber; // Logic slot number

 DWORD dwDisplayBuffIndex;
 DWORD dwBobMode; // 0:off, 1:Top 1'st, 2:Btm 1'st, 3:Only

Top, 4:Only Btm
 }
 ClientData; // filled by the client before the surface

UNLOCK

} SURFMCSiMagic, *LPSURFMCSiMagic;

typedef LPSURFMCSiMagic (__stdcall *LPSTARTDECODEFUNC_MG)(MCSiMagicBegin-
Data *);

typedef LPSURFMCSiMagic (__stdcall *LPENDDECODEFUNC_MG)();
typedef LPSURFMCSiMagic (__stdcall *LPPROCESSMBFUNC_MG)(MCSiMagicMacroBlk

*);

#endif

extern LPSURFMCSiMagic __stdcall StartDecodeMotionComp(MCSiMagicBeginData
*);

extern LPSURFMCSiMagic __stdcall EndDecodeMotionComp() ;
extern LPSURFMCSiMagic __stdcall ProcessMacroBlock(MCSiMagicMacroBlk *);
SM3110 Technical Reference Manual 6-117

Programmer’s Reference Si l icon
 M A G I C
6.9.4 Registers
6.9.4.1 Start and End Decode Functions

Two functions are defined in the driver that start and end the MC decode process. The driver
passes pointers to these two functions to SoftDVD. The StartDecode function checks the status
register to ensure that the 3D/MC subsystem is not busy and then writes the MC command to the
command FIFO. SoftDVD passes the size of the data written to the driver during in the EndDe-
code function using which the driver writes the IDCT data to the command FIFO.

6.9.4.2 CDU Start Motion Compensation Command

The CDU interprets 0xD (13) as the Motion Compensation command. This command places the
CDU into MC mode.

6.9.4.3 End of Stream Instruction

In MC mode, the Command Decode Unit interprets 3D command FIFO data as MC core instruc-
tions. To leave MC mode, an End of Stream instruction is sent to the command FIFO. This
instruction is 20000000H.

6.9.4.4 Format Conversion Instruction

The MPEG-2 decoded bitstream is converted from the 4:2:0 YCrCb format to the SM3110 sup-
ported 4:2:2 format. The Command Decode Unit interprets a command with a leading value of
0xC (12) in the four msb bits as an MC format conversion command. These commands are not
valid between the MC command 0xD (13) and the End of Stream command 20000000H.

Field Function

31:28 Command. DH
27:00 Reserved.

Field Function

31:00 MC End of Stream. 20000000H

Field Function

31:28 Command CH.
27:26 Slot Number (0,1,2,3). Selects which slot should be converted.
25:24 Horizontal Compression Ratio
6-118 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
In MC mode, the registers for slot base addresses and plane offsets need to be set by the driver.
These are as follows:

Slot Base Addresses:

Plane 1/ Plane 3 Offsets:

Plane 2 Offsets:

Value Semantics

0

1

2

3

1-1 compression (no compression)

2-1 compression

4-1 compression

8-1 compression
23:00 Destination buffer address.

Offset Field Function
+340H 31:00 Slot 0 Base Address
+360H 31:00 Slot 1 Base Address
+380H 31:00 Slot 2 Base Address
+3A0H 31:00 Slot 3 Base Address

Offset Field Function
+344H 31:00 Slot 0 Plane 1/Plane 3 Offset
+364H 31:00 Slot 1 Plane 1/Plane 3 Offset
+384H 31:00 Slot 2 Plane 1/Plane 3 Offset
+3A4H 31:00 Slot 3 Plane 1/Plane 3 Offset

Offset Field Function
+348H 31:00 Slot 0 Plane 2 Offset
+368H 31:00 Slot 1 Plane 2 Offset
+388H 31:00 Slot 2 Plane 2 Offset
+3A8H 31:00 Slot 3 Plane 2 Offset
SM3110 Technical Reference Manual 6-119

Programmer’s Reference Si l icon
 M A G I C
6.9.5 Display Memory Requirements

6.9.5.1 Frame and Format Buffers

MPEG-2 uses a 4:2:0 video format which implies that for each video frame, the number of samples
of each chrominance component (Cr and Cb) is one-half of the number of samples of luminance
(Y), both horizontally and vertically.

With the 4:2:0 format, each pixel will take an average of 12 bits (eight bits for the luma and four for
the chroma) which translates to each pixel requiring 1.5 bytes of storage. This tells us that one
frame or picture in NTSC format which is 720 x 480 will require 518,400 bytes of memory while
one frame in PAL format which is 720 x 576 will require 622,080 bytes of memory. The motion
compensation core requires that 3 buffers of equal size need to be available to store the I, P and B
frames that will be shown.

Table 6-8. Memory required for the three frame buffers

NTSC: 720 x 480 x 1.5 = 518,400 bytes x 3 = 1,555,200 bytes

PAL: 720 x 576 x 1.5 = 622,080 bytes x 3 = 1,866,240 bytes

The MPEG-2 decoded bitstream is in the 4:2:0 YCrCb pixel format as mentioned earlier. SM3110
can directly display 4:2:2 YCrCb progressive video. This requires a conversion to the 4:2:2 video
format. Two format conversion buffers are allocated for this purpose. The memory requirements
are shown below.

Table 6-9. Memory required for the two format conversion buffers

NTSC: 720 x 480 x 2 = 691,200 bytes x 2 = 1,382,400 bytes

PAL: 720 x 576 x 2 = 829,440 bytes x 2 = 1,658,880 bytes

The total memory requirement for NTSC is 1,555,200 bytes + 1,382,400 bytes = 2,937,600 bytes
and the total memory required for PAL is 1,866,240 bytes + 1,658,880 bytes = 3,525,120 bytes.
6-120 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.9.5.2 Screen Resolutions Supported

Based on the above memory requirements for frame buffers and format conversion buffers, the fol-
lowing screen resolutions are supported.

Table 6-10. Screen Resolutions Supported

6.9.5.3 System Memory Requirements

Table 6-11 lists the system memory requirement for the DirectDraw surface command buffer. This
is the buffer that is used to store the commands and data that are sent to the video card driver
(HAL) from SoftDVD

Table 6-11. Command and Data buffer sizes (in bytes) for NTSC and PAL format

Format Total Memory
Available (bytes)

Required for
Motion Comp.

(bytes)

Memory Available
for Display (bytes)

Supported Display
Resolution

NTSC 4,194,304 2,937,600 1,256,704 800x600@16bpp
(=960,000 bytes)

1024x768@8bpp
(=786,432 bytes)

PAL 4,194,304 3,525,120 669,184 800x600@8bpp
(=480,000 bytes)

ID Type Formula NTSC PAL
A Macro Blocks (pixels)/(16*16) 1,350 1,620
B # Blocks 6 * A 8,100 9,720
C Commands 12 * B 97,200 116,640
D Data 64 * B 518,400 622,080
E Data with 8 or 16 bit Error 2 * D 1,036,800 1,244,160

Total Buffer Size C + E 1,134,000 1,360,600
SM3110 Technical Reference Manual 6-121

Programmer’s Reference Si l icon
 M A G I C
6.10 Power Management
6.10.1 Overview

The Power Management Function supports Microsoft’s OnNow specification and the VESA BIOS
Extensions/Power Management (VBE/PM) Standard. The Power Management Function receives
commands (function calls) from the Operating System to place the display controller and display
monitor(s) into one of several power saving/consuming states. The Power Management Function
does not establish any power usage policy; it only supports the policy defined by the operating
system.

Power management supports four states: On, Standby, Suspend and Off. These states represent
four successive levels of power consumption. The operating system selects the appropriate state
based upon user parameters, available system power and keyboard/mouse events.

6.10.2 OnNow Power Management

For Power Management in a Windows operating system environment, Microsoft has specified how
power management can be supported “OnNow Power Management and Display Device Class
Drivers”. This specification describes which functions are expected from a miniVDD.

6.10.3 VESA BIOS Power Management

For BIOS Power Management, the VBE/PM Standard specifies how power management is sup-
ported. This standard specifies a set of functions (actually sub-functions) which are invoked by
application software (using interrupt 10H) to utilize power saving features of display hardware.

6.10.4 Other Power Management

Other than VESA and OnNow power management, software can perform dynamic power manage-
ment according to the hardware usage. SM3110 is designed in a way that each individual block
can be shut off independently. The remaining issue will be when and what to shut off or turn on at
any particular time. Generally speaking, under a normal simultaneous view state, display 1 and
scaler 1 can all be turned off, while display 0 should be always on.
6-122 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.10.5 Registers for OnNow and VESA DPMS

What follows are details to support power management either in BIOS or a miniVDD using the
SM3110. Support for each power consuming/saving state is described as if the state is entered
without any dependence upon the previous state.

6.10.5.1 D0 – On

6.10.5.2 D1 – Standby

Register bit(s) Description
+0DF7H

+1DF7H

01:00 Enable Horizontal Sync by setting field to 0.

+0DF7H

+1DF7H

03:02 Enable Vertical Sync by setting field to 0.

+0D30H

+1D30H

31:21 Restore video output by setting field to a nonzero number based on dis-
play format and stride information.

+00D4H 06:00 Enable MCLK by setting all bits to 0.
+00D8H 03:00 Enable DCLK by setting all bits to 0.
+0DF7H

+1DF7H

07 Power up DAC by setting bit to 0.

Register bit(s) Description
+0DF7H

+1DF7H

01:00 Disable Horizontal Sync by setting field to the value 1 or 2. This
depends upon what the display panel expects as a pulse (a voltage
increase pulse or a voltage drop pulse). 0 implies voltage is always low,
1 implies voltage is always high.

+0DF7H

+1DF7H

03:02 Enable Vertical Sync by setting field to 0.

+0D30H

+1D30H

31:21 Make Video go “Blanked” by setting field to 0.

+00D4H 06:00 Enable MCLK by setting all bits to 0.
+00D8H 03:00 Disable DCLK by setting all bits to 1.
+0DF7H

+1DF7H

07 Power down DAC by setting bit field to 1.
SM3110 Technical Reference Manual 6-123

Programmer’s Reference Si l icon
 M A G I C
6.10.5.3 D2 – Suspend

6.10.5.4 D3 – Off

Register bit(s) Description
+0DF7H

+1DF7H

01:00 Enable Horizontal Sync by setting field to 0.

+0DF7H

+1DF7H

03:02 Disable Vertical Sync by setting field to 1 or 2. Depends upon what dis-
play panel expects as a pulse (a voltage increase pulse or a voltage
drop pulse). 0 implies voltage is always low, 1 implies voltage is always
high.

+0D30H

+1D30H

31:21 Make Video go “Blanked” by setting field to 0.

+00D4H 06:00 Enable MCLK by setting all bits to 0.
+00D8H 03:00 Disable DCLK by setting all bits to 1.
+0DF7H

+1DF7H

07 Power down DAC by setting bit field to 1.

Register bit(s) Description
+0DF7H

+1DF7H

01:00 Disable Horizontal Sync by setting field to the value 1 or 2. This
depends upon what the display panel expects as a pulse (a voltage
increase pulse or a voltage drop pulse). 0 implies voltage is always low,
1 implies voltage is always high.

+0DF7H

+1DF7H

03:02 Disable Vertical Sync by setting field to 1 or 2. Depends upon what dis-
play panel expects as a pulse (a voltage increase pulse or a voltage
drop pulse). 0 implies voltage is always low, 1 implies voltage is always
high.

+0D30H

+1D30H

31:21 Make Video go “Blanked” by setting field to 0.

+00D4H 06:00 Disable MCLK by setting all bits to 1.
+00D8H 03:00 Disable DCLK by setting all bits to 1.
+0DF7H

+1DF7H

07 Power down DAC by setting bit field to 1.
6-124 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.10.6 Registers for Dynamic Power Management

The registers to control individual blocks are 0xD4 and 0xD8. The following table is a breakdown
of their definition.

Block Registers Description
Display 0 +00D8H bit 0 Should be always on
Display 1 +00D8H bit 1,

+00D4H bit 3
Shut off when using simultaneous view

Scaler 0 +00D8H bit 3,
+00D4H bit 1

Turn on during CreateSurface() in DirectDraw Turn off dur-
ing DestroySurface() in DirectDraw

Scaler 1 +00D8H bit 2,
+00D4H bit 2

When dual view is enabled, same condition as Scaler 0

2D Engine +00D4H bit 5 Turn on during 2D driver enable

Turn off during 2D driver disable
3D Engine +00D4H bit 6 Turn on during context creation in Direct3D

Turn off during context destroy in Direct3D
MIU +00D4H bit 0 Should be always on
SM3110 Technical Reference Manual 6-125

Programmer’s Reference Si l icon
 M A G I C
6.11 Video Capture
6.11.1 Overview

The SM3110 controller supports YUV4:2:2 and CCIR 656 video input and interrupt mechanisms
for video capture. A I2C video decoder must be used to convert the incoming NTSC/PAL/SECAM
video signal to digital streams. A configurable input/output data port is provided to access up to 8
bits of data that can be used for I2C device control.

6.11.2 I2C device interface

Pins 2 and 3 of the configurable data port are reserved to control the video decoder I2C device. Pin
2 is for clock (SCL) and pin 3 is for data (SDA).

Sample code : Control CIO port (configurable input/output data port)

SCL_BIT equ 4 ;bit 2 for Clock
SDA_BIT equ 8 ;bit 3 for Data

InitCIOport proc near
mov fs,CmdPortSelector ;mapio selector
mov al,0F3h ;bit 3:2=00 to enable the mask
mov fs:[412h],al ;CIO control mask
mov holding_register,0FFh ;pull high init.
ret

InitCIOport endp

WriteBit macro bMask,fHighLow ;set clock/data pin to Low(0) or High(non-0)
mov al,fHighLow
neg al ;entry:0, non-0
sbb al,al ; 0, FF
and al,bMask ; 0, SCL_BIT/SDA_BIT
and holding_register, NOT bMask
or holding_register, al
mov al, holding_register
mov byte ptr fs:[411h],al ;CIO output
endm

ReadBit macro bMask ;read clock or data pin disable mask
mov ah,fs:[412h] ;CIO control mask
or ah,bMask ;set 1 to disable
mov fs:[412h],ah ;CIO control mask

;Read in holding_register
mov al,fs:[410h] ;CIO input port
mov holding_register,al

;enable mask
and ah,NOT bMask ;set 0 to enable
6-126 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
mov fs:[412h],ah ;CIO control mask
;return in al=0 or non-0

and al, bMask ;data in mask bit
endm

Delay macro
push cx
mov cx, delay_time ;delay time adjust to fit I2C device

duration spec
delay_loop:

loop delay_loop
pop cx
endm

With macros for reading and writing individual bits to the I2C device, this is an example of how to
write one full byte of data to the I2C device.

SendByteToI2cDevice proc near ;entry: bData
mov bl,bData
mov cx,8 ;8 bits
WriteBit SCL_BIT,0 ;write clock pin to low

sbi2c_loop:
shl bl,1
sbb bh,bh
WriteBit SDA_BIT,bh ;write data pin

WriteBit SCL_BIT,1 ;write clock pin to high
Delay
WriteBit SCL_BIT,0 ;write clock pin to low to create clock pulse
Delay
loop sbi2c_loop ;loop 8 times for a BYTE

Delay

WriteBit SDA_BIT,1 ;write data pin with HIGH to check for ACK
Delay
Delay
Delay
WriteBit SCL_BIT,1 ;write clock pin to HIGH for a clock pulse
Delay

ReadBit SDA_BIT ;read bit in AL to see if it is pulled low by
I2C device

Delay

push ax ;save
WriteBit SCL_BIT,0 ;write clock pin to LOW for a clock pulse
Delay
pop ax ;restore
ret ;return in AL with 0 (ACK) or non-0 (no ACK)
SM3110 Technical Reference Manual 6-127

Programmer’s Reference Si l icon
 M A G I C
SendByteToI2cDevice endp

ReadByteFromI2cDevice proc near
mov cx,8 ;8 bits
WriteBit SCL_BIT,0 ;write clock pin to low

rbi2c_loop:
WriteBit SCL_BIT,1 ;write clock pin to high
Delay

ReadBit SDA_BIT ;write data pin in AL=0 or non-0
neg al
adc bl,bl ;carry bit shift to BL

WriteBit SCL_BIT,0 ;write clock pin to low to create a clock pulse
Delay
loop rbi2c_loop ;loop 8 times for a BYTE

Delay

WriteBit SDA_BIT,0 ;write data pin to send ACK
Delay
WriteBit SCL_BIT,1 ;write clock pin to HIGH for a clock pulse
Delay
WriteBit SCL_BIT,0 ;write clock pin to LOW for a clock pulse
Delay

WriteBit SDA_BIT,1 ;write data pin device
Delay

mov ax,bx ; return read BYTE data in AL
ret

ReadByteFromI2cDevice endp
6-128 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.11.3 Video port control

As with other graphics data, the SM3110 surface mechanism is used to associate the video input
with a buffer. The scaler channels are used to associate the surface to a display. This section pro-
vides examples to perform common control operations. These are explained as specific examples
for clarity, but could be combined in real applications.

To prepare for video capture function, following steps are required at the initialization period.

1. Define scaler and video capture surfaces.
2. Channel controls - assign surface
3. Set Overlay priority.
4. Set ColorKey

Sample code: Prepare for video capture

PrepareVideoCapture proc near

;;Define a surfaces for video data input
mov ax, VIDCAP_SURFACEINDEX ;surface descriptor used for video cap-

ture
mov surfacenum,ax
mov eax, VIDCAP_WIDTH
mov surfacestride,eax
mov edx, VIDCAP_HEIGHT
mul edx
mov edx,dwPrivatePhyAddr ;total mem-reserved buffer
sub edx,eax ;assign surface location at the end of

memory
mov surfacebase,edx
Call DefineSurface ;define the suface to accept video data
mov fs,CmdPortSelector ;mapio selector
mov ax, VIDCAP_HEIGHT
mov fs:[VideoPortMaxHeight],ax ;set video input height here

;;assign the defined for scaler and video capture channel
mov eax,surfacenum
mov fs:[ChScaler0SIndex],eax ;assign to scaler channel
mov fs:[ChVidCapSIndex],eax ;assign to video capture channel
xor eax,eax
mov fs:[ChScaler0Offsets],eax ;scaler channel default start at (0,0)
mov fs:[ChVidCapOffsets],eax ;video capture channel always start at

(0,0)
;;set color key

mov eax,color-key
mov fs:[Dsp0ColCmp],eax ;set dest. Color-key color
mov eax,200h ;bit 9 for dest.color-key
mov fs:[Dsp0MixCtl],eax ;enable dest. Color-key

;;set overlay control
mov eax,10h ;BG:scaler channel, FG:display channel
mov fs:[Overlay0Priority],eax ;enable Color-key overlay
ret

PrepareVideoCapture endp
SM3110 Technical Reference Manual 6-129

Programmer’s Reference Si l icon
 M A G I C
The method used to shrink or stretch video data from a scaler channel to a display channel was
described in display controls, Section 6.5.1: 2D Functions, Display Operations.

To enable or disable video, both the video input port and the scaler channel need to be pro-
grammed.

Sample code : Enable or Disable Video

EnableVideo proc near
;;enable video input port

mov fs,CmdPortSelector ;mapio selector
mov al,prescale ;prescale factor, 0,1,2,3 to shrink

video input by factor 1,1/2,1/4 and 1/8
shl al,4 ;move to bit 4 and 5
or al,1 ;bit 0 to enable/disable
mov fs:[VideoPortConfig],al ;set video input height here

;;enable video to display
mov eax,58h
mov fs:[ChScaler0Format],eax ;set format to YUY2 to enable
ret

EnableVideo endp

DisableVideo proc near
;;disable video input

mov fs,CmdPortSelector ;mapio selector
mov al,prescale ;prescale factor, 0,1,2,3 to shrink

video input by factor 1,1/2,1/4 and 1/8
shl al,4 ;move to bit 4 and 5
mov fs:[VideoPortConfig],al ;set video input height here

;;disable video to display
xor eax,eax
mov fs:[ChScaler0Format],eax ;0 to disable
ret

DisableVideo endp
6-130 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.11.4 Interrupt for video capture

An interrupt line serves as the hardware interrupt scheme for video capture. The following func-
tions show how to enable, disable and clear the interrupt line.

Sample code: Control interrupt line

EnableInterrupt proc near
mov fs,CmdPortSelector ;mapio selector
mov al,020h ; bit 5 for Video capture interrupt
or fs:[InterruptMask],al ; 0F1h
mov al,02h ;bit 1 for External Video Input
or fs:[DispIntFlag],al ; 0DF0h
ret

EnableInterrupt endp

DisableInterrupt proc near
mov fs,CmdPortSelector ;mapio selector
mov al,0fch ;bit 1 for External Video Input, bit

0:reset flag bit
and fs:[DispIntFlag],al ; 0DF0h
mov al,0dfh ; bit 5 for Video capture interrupt
and fs:[InterruptMask],al ; 0F1h
ret

DisableInterrupt endp

ClearInterrupt proc near
mov fs,CmdPortSelector ;mapio selector
mov al,02h ;bit 1 for External Video Input
or fs:[DispIntFlag],al ; 0DF0h
ret

ClearInterrupt endp
SM3110 Technical Reference Manual 6-131

Programmer’s Reference Si l icon
 M A G I C
6.12 TV Out

See Chapter 7, Application Notes in the TV encoder section for details.

6.13 Diagnostics

The SM3110 contains some features useful for diagnostic purposes. The primary one of these is
the diagnostic port, which allows predefined signals from different subsystems in the chip to be
brought out to 8 output pins. To do this, software must set the appropriate 3-bit code in the diag-
nostic port register for the desired subsystem (other subsystems must be set to 0 to act as a pass-
through).

In addition, a performance counter capability allows counting of any of the 8 diagnostic port bits
selected by setting the appropriate counter source and enabling the performance counter in regis-
ter 0x03E of the Command Decode Unit. The resultant performance count appears in register
0x010.

Also, some of the SM3110 internal SRAM values for the Triangle Setup Unit and Command
Decode Unit are visible via registers 0x5C0-0x5FC, 0x600-0x7FC and 0x800-0xBFC.
6-132 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.14 Software Definitions

This section provides software definitions that are useful in understanding and programming the
functions of the SM3110.

6.14.1 Equates
VENDORID equ 8888H
DEVICEID equ 4831H
Memory/Register Map
; Offsets to register areas, command ports, image ports, cursor area and

deferred register write buffer
PERIPHERAL_CTL_BASE equ 01FE0000H
REGISTER_BASE_OFFSET equ 01FF0000H
IMAGE_BASE_OFFSET equ 01FFC000H

; PrivateMemSelector equates
PRIVATEAREA_SIZE equ 20000H ;we reserve 128K for all fifos
CMD3DFIFO_SIZE equ 10000H ;64K 3d cmd fifo
CMDFIFO_SIZE equ 4000H ;16K 2d cmd fifo
IMGFIFO_SIZE equ 8000H ;32K image fifo
CURDEFERREDBUFFER_SIZE equ 400H ;1K cursor defer fifo
DSPDEFERREDBUFFER_SIZE equ 400H ;1K display defer fifo
CURSORBUFFER_SIZE equ 0800H ;2K cursor image buffer
ICONBUFFER_SIZE equ 0800H ;2K icon image buffer
ECMDFIFOSIZE equ 2 ;encoded size - 16K
EIMGFIFOSIZE equ 3 ;encoded size - 32K

CMD3DFIFO_OFFSET equ 0
IMGFIFO_OFFSET equ CMD3DFIFO_OFFSET+CMD3DFIFO_SIZE
CMDFIFO_OFFSET equ IMGFIFO_OFFSET+IMGFIFO_SIZE
CURDEFERRED_OFFSET equ CMDFIFO_OFFSET+CMDFIFO_SIZE
DSPDEFERRED_OFFSET equ CURDEFERRED_OFFSET+CURDEFERREDBUFFER_SIZE
CURSOR_OFFSET equ DSPDEFERRED_OFFSET+DSPDEFERREDBUFFER_SIZE
ICON_OFFSET equ CURSOR_OFFSET+CURSORBUFFER_SIZE

; Rendering Engine Control/Status registers
RenderEngineStatus equ 008F0h ;rendering engine status
RenderEngineControl equ 008F1h ;rendering engine control
Status2D equ 08F0H ;2D engine status
BUSY2D equ 010B ;2D engine is busy executing
RUNNING2D equ 001B ;2D engine is running (not stopped)

Control2D equ 08F1H ;2D engine control register
RESET2D equ 010000000B ;Reset 2D engine
SINGLESTEP2D equ 000000010B ;Executes next command and stops
START2D equ 000000001B ;Starts 2D engine
STOP2D equ 000000000B ;Stops 2D
SM3110 Technical Reference Manual 6-133

Programmer’s Reference Si l icon
 M A G I C
; Interrupts
InterruptStatus equ 000F0H ;Interrupt status
InterruptMask equ 000F1H ;Global interrupt mask
I_DISPLAY equ 10000000B ;Display 0 Interrupt
I_DISPLAY1 equ 01000000B ;Display 1 interrupt
I_VideoCapture equ 00100000B ;Video Capture interrupt
I_PeripheralIO equ 00010000B ;Peripheral IO interrupt
I_HostDMA equ 00000100B ;Host DMA interrupt

; Power Management
OutPutEnablePM equ 000E0H ;Pwr Mgmnt. Output enable
EXTMEMBUS equ 10000000B ;Ext. Mem Bus
VAFCPORT equ 01000000B ;VAFC port
PERIPHIO equ 00100000B ;Peripheral IO port

; Surface Descriptor Registers
NEXTSURFACE equ 010H ;multiplier to index into next

surface registers
SurfaceBaseAddress equ 00A00H ;Surfaces base address
SurfaceStrideFormat equ 00A04H ;Surfaces stride format base
S0BaseAddress equ 00A00H ;Surface 0 Base address
S0StrideFormat equ 00A04H ;Surface 0 Stride and format
S1BaseAddress equ 00A10H ;Surface 1 Base address
S1StrideFormat equ 00A14H ;Surface 1 Stride and format
S2BaseAddress equ 00A20H ;Surface 2 Base address
S2StrideFormat equ 00A24H ;Surface 2 Stride and format
S3BaseAddress equ 00A30H ;Surface 3 Base address
S3StrideFormat equ 00A34H ;Surface 3 Stride and format
S4BaseAddress equ 00A40H ;Surface 4 Base address
S4StrideFormat equ 00A44H ;Surface 4 Stride and format
S5BaseAddress equ 00A50H ;Surface 5 Base address
S5StrideFormat equ 00A54H ;Surface 5 Stride and format
S6BaseAddress equ 00A60H ;Surface 6 Base address
S6StrideFormat equ 00A64H ;Surface 6 Stride and format
S7BaseAddress equ 00A70H ;Surface 7 Base address
S7StrideFormat equ 00A74H ;Surface 7 Stride and format
S8BaseAddress equ 00A80H ;Surface 8 Base address
S8StrideFormat equ 00A84H ;Surface 8 Stride and format
S9BaseAddress equ 00A90H ;Surface 9 Base address
S9StrideFormat equ 00A94H ;Surface 9 Stride and format
SABaseAddress equ 00AA0H ;Surface A Base address
SAStrideFormat equ 00AA4H ;Surface A Stride and format
SBBaseAddress equ 00AB0H ;Surface B Base address
SBStrideFormat equ 00AB4H ;Surface B Stride and format
SCBaseAddress equ 00AC0H ;Surface C Base address
SCStrideFormat equ 00AC4H ;Surface C Stride and format
SDBaseAddress equ 00AD0H ;Surface D Base address
SDStrideFormat equ 00AD4H ;Surface D Stride and format
SEBaseAddress equ 00AE0H ;Surface E Base address
SEStrideFormat equ 00AE4H ;Surface E Stride and format
SFBaseAddress equ 00AF0H ;Surface F Base address
6-134 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
SFStrideFormat equ 00AF4H ;Surface F Stride and format

CURSOR0SURFACEINDEX equ 0
CURSOR1SURFACEINDEX equ 1
SCALER0SURFACEINDEX equ 2
SCALER1SURFACEINDEX equ 3
DISPLAYSURFACEINDEX equ 4
FIRSTSURFACEINDEX equ 5
LASTSURFACEINDEX equ 0Eh
DISPLAY1SURFACEINDEX equ 0Eh
ICONSURFACEINDEX equ 0Fh

CURSOR0SURFACE equ SurfaceBaseAddress +(CURSOR0SURFACEINDEX* NEXTSURFACE)
CURSOR1SURFACE equ SurfaceBaseAddress +(CURSOR1SURFACEINDEX* NEXTSURFACE)
SCALER0SURFACE equ SurfaceBaseAddress +(SCALER0SURFACEINDEX* NEXTSURFACE)
SCALER1SURFACE equ SurfaceBaseAddress +(SCALER1SURFACEINDEX* NEXTSURFACE)
DISPLAYSURFACE equ SurfaceBaseAddress +(DISPLAYSURFACEINDEX* NEXTSURFACE)
FIRSTSURFACE equ SurfaceBaseAddress +(FIRSTSURFACEINDEX* NEXTSURFACE)
LASTSURFACE equ SurfaceBaseAddress +(LASTSURFACEINDEX* NEXTSURFACE)
DISPLAY1SURFACE equ SurfaceBaseAddress +(DISPLAY1SURFACEINDEX* NEXTSURFACE)
ICONSURFACE equ SurfaceBaseAddress +(ICONSURFACEINDEX* NEXTSURFACE)

BPP1 equ 1
BPP4 equ 3
BPP8 equ 4
BPP16 equ 5
BPP15 equ 5
BPP24 equ 6

CHANNELCUR equ 0
CHANNELICON equ 1
CHANNEL0 equ 2
CHANNEL1 equ 3
CHANNEL2 equ 4

; Display Channel parameters
ChannelOffsets equ 00B00H ;Offsets register base
ChannelIndex equ 00B04H ;Index register base
ChCurOffsets equ 00B00H ;Cursor Channel display X,Y offsets
ChCurSIndex equ 00B04H ;Cursor Channel attached surface

index
ChIconOffsets equ 00B10H ;Control Channel display X,Y offsets
ChIconSIndex equ 00B14H ;Control Channel attached surface

index
Ch0Offsets equ 00B20H ;Channel 0 display X,Y offsets
Ch0SIndex equ 00B24H ;Channel 0 attached surface index
Ch1Offsets equ 00B30H ;Channel 1 display X,Y offsets
Ch1SIndex equ 00B34H ;Channel 1 attached surface index
Ch2Offsets equ 00B40H ;Channel 2 display X,Y offsets
Ch2SIndex equ 00B44H ;Channel 3 attached surface index
SM3110 Technical Reference Manual 6-135

Programmer’s Reference Si l icon
 M A G I C
Ch0UOffsets equ 00BB0H ;Channel 0 U offsets
Ch0VOffsets equ 00BC0H ;Channel 0 V offsets
ChAudSIndex equ 00BA4H ;Audio Channel Playback Surface Index
ChVidCapSIndex equ 00BE4H ;Video Capture Channel Surface Index

; Buffer Descriptor Registers
CMDBufferBaseAddress equ 00C00H ;Command Buffer Base/Size
CMDBufferWritePtr equ 00C04H ;Command buffer Write pointer
CMDBufferReadPtr equ 00C08H ;Command buffer Read pointer
IMGBufferBaseAddress equ 00C10H ;Image data Buffer Base/Size
IMGBufferWritePtr equ 00C14H ;Image buffer Write pointer
IMGBufferReadPtr equ 00C18H ;Image buffer Read pointer
CmdFIFOStatus equ 00C0CH ;Command Parameter FIFO status
ImgDataFIFOStatus equ 00C1CH ;Image Data FIFO status
FIFOMASK equ 0FH ;
FIFOFULL equ 0 ;Fifo full
FIFO1_8TH equ 1 ;Fifo 1/8 empty
FIFO1_4TH equ 2 ;Fifo 1/4 empty
FIFO3_8TH equ 3 ;Fifo 3/8 empty
FIFO1_2TH equ 4 ;Fifo 1/2 empty
FIFO5_8TH equ 5 ;Fifo 5/8 empty
FIFO3_4TH equ 6 ;Fifo 3/4 empty
FIFO7_8TH equ 7 ;Fifo 7/8 empty
FIFOEMPTY equ 8 ;Fifo empty
CursorRecordPtr equ 00C24H ;Cursor Record pointer - Write

pointer
CursorReplayPtr equ 00C28H ;Cursor Replay pointer - Read pointer
DisplayRecordPtr equ 00C34H ;Display Record pointer - Write

pointer
DisplayReplayPtr equ 00C38H ;Display Replay pointer - Read

pointer

DMALocalMemAddPtr equ 00C44H ;Host DMA Local Memory Address
Pointer

CursorReplayStsReg equ 00CF0H ;Cursor Replay status
DisplayReplayStsReg equ 00CF4H ;Display Replay status
REPLAYPENDING equ 010000000B
REPLAYACTIVE equ 01B ;Deferred register update is active
CursorReplayCtlReg equ 00CF0H ;Cursor Replay control(R/W)
DisplayReplayCtlReg equ 00CF4H ;Display Replay control(R/W)
ENABLEREPLAY equ 00000001B ;Enable replay of deferred regis-

ter writes
; Display Control
ChannelFormat equ 00D00H ;Channel format
CursorFormat equ 00D00H ;Cursor Channel Format
CURSOROFF equ 0 ;
CURSOR1 equ 00010000B ;enable mono cursor
CURSOR16 equ 01010000B ;enable color cursor
IconChFormat equ 00D10H ;Icon Control Channel Format
Ch0Format equ 00D20H ;Scaler channel(0) format
Ch0YRControls equ 00D24H ;Scaler channel(0) controls YR
6-136 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
Ch0UVGBControls equ 00D28H ;Scaler channel(0) controls UV/GB
INC_FRAC_BIT equ 11 ;Fractional component, LS bits
Ch0Controls equ 00D2CH ;Scaler channel(0), Increment

values
XNEAREST equ 00000H ;X - Nearest neighbor
XBILINEAR equ 08000H ;X - Bilinear
YNEAREST equ 00000H ;Y - Nearest neighbor
YBILINEAR equ 080000000H ;Y - Bilinear
Ch1Format equ 00D30H ;Channel 1 format
Ch2Format equ 00D40H ;Channel 2 format
CLUT4 equ (BPP4 shl 4)+1 ;4 BPP color lookup
CLUT8 equ (BPP8 shl 4)+1 ;8 BPP color lookup
RGB555 equ (BPP16 shl 4) ;RGB 5-5-5
RGB565 equ (BPP16 shl 4)+1 ;RGB 5-6-5
RGB888 equ (BPP24 shl 4) ;RGB 8-8-8
YUV420 equ (BPP8 shl 4)+8 ;8 Bit YUV 4-2-0 Planar MPEG
YUV9 equ (BPP8 shl 4)+9 ;8 Bit YUV 9 - Indeo
YUV422 equ (BPP16 shl 4)+8 ;16 Bit YUV 4-2-2
YVU422 equ (BPP16 shl 4)+9 ;16 Bit YVU 4-2-2

OverlayPriority equ 00D80H ;Overlay priority control
Ch0ChromaCmp equ 00D84H ;Channel 0, chroma comparator
Dsp0ColCmp equ 00D88H ;Display0 color comparator
Dsp1ColCmp equ 01D88H ;Display1 color comparator
Dsp0MixCtl equ 00D90H ;Mix control between Display0
Dsp1MixCtl equ 01D90H ;Mix control between Display1
ENABLECTL equ 0001000000000000B ;Enable control surface
DISABLECTL equ 0000 000000000000B ;Enable control surface
ENABLECOLKEY equ 0000100000000000B ;Enable color keying
DISABLECOLKEY equ 0000000000000000B ;Enable color keying
KEYINVERT equ 0000010000000000B ;Key sense inverted selects

Dest.(Back) channel
KEYNORMAL equ 0000000000000000B ;Key sense normal selects

Src.(Fore) channel
KEYSRCBACK equ 0000001000000000B ;Key source Dest. (Back) channel
KEYSRCFORE equ 0000000000000000B ;Key source . (Fore) channel
BLENDENABLE equ 0000000100000000B ;Enable blending
BLENDDISABLE equ 0000000000000000B ;Disable blending

AudioChFormat equ 00DE0H ;Audio Playback channel format
AUDIOPLAY equ 0000000B ;Audio Play
AUDIOMUTE equ 0100000B ;Audio mute
AUDIOPLAYENA equ 0010000B ;Audio enabled at next display HSYNC
AUDIOPLAYDISA equ 0000000B ;Audio disabled at next display HSYNC
AUDIOBSIZE256 equ 0000000 B ;Audio buffer size 256 bytes
AUDIOBSIZE512 equ 0000001 B ;Audio buffer size 256 bytes
AudioChClkControlsequ 00DE4H ;Serial Audio port clock controls

DispIntFlag equ 00DF0H ;Display Interrupt Flag
DISPVBLANKINT equ 001B ;Display Vblank Interrupt occured
EXTVIDEOSYNCINT equ 010B ;External Video Sync interrupt occured
SM3110 Technical Reference Manual 6-137

Programmer’s Reference Si l icon
 M A G I C
DispIntEnable equ 00DF1H ;MAXH only, SM3110 merged to F1H
DisplayStatus equ 00DF2H ;
ModeCtlReg equ 00DF4H ;Mode control Register
TIMEVGACRTC equ 00000000B ;Timing - VGA CRTC
TIMEENHCRTC equ 00000100B ;Timing - Enh. CRTC
TIMEENHVGA equ 00001000B ;Timing - Enh. CRTC genlock VGA CRTC
TIMEENHEXT equ 00001100B ;Timing - Enh. CRTC genlock with Exter-

nal Sync
DISPENAVGA equ 00000000B ;Display Output - Enable VGA
DISPENAENH equ 00000001B ;Display Output - Enable Enhanced
DISPVGAENH equ 00000010B ;Display Output - VGA and Enh
DISPDISABLED equ 00000011 B ;Display Output - disabled
SpDisplayControl equ 00DF5H ;Special Display Control
EnhSyncPolarityRegequ 00DF6H ;Enh Sync Polarity Register
HSYNCPOS equ 001B
VSYNCPOS equ 010B
SyncLevelReg equ 00DF7H ;Sync levels for power management
SYNCSNORMAL equ 0
HSYNCSET0 equ 00001B ;Force Hsync to 0
HSYNCSET1 equ 00010B ;Force Hsync to 1
VSYNCSET0 equ 00100B ;Force Vsync to 0
VSYNCSET1 equ 01000B ;Force Vsync to 1
ScalerFifoSize equ 00DF8H ;Display Scaler FIFO Size
ScalerFifoThresholdequ 00DFAH ;Display Scaler FIFO Threshold
PaletteRWState equ 00DFCH ;Palette Read/Write status
;
; Display Timing
ChViewPositionStarts equ 00E00H ;Channel View position starts
ChViewPositionEnds equ 00E04H ;Channel View position ends
CursorPositionStarts equ 00E00H ;Cursor Channel Viewport posi-

tion top left
CursorPositionEnds equ 00E04H ;Cursor Channel Viewport extents

bot. right
IconChPositionStarts equ 00E10H ;Icon Control Channel Viewport

position top left
IconChPositionEnds equ 00E14H ;Icon Control Channel Viewport

extents bot right
Ch0ViewPositionStarts equ 00E20H ;Channel 0 Viewport position top

left
Ch0ViewPositionEnds equ 00E24H ;Channel 0 Viewport extents bot

right
Ch1ViewPositionStarts equ 00E30H ;Channel 1 Viewport position top

left
Ch1ViewPositionEnds equ 00E34H ;Channel 1 Viewport extents bot

right
Ch2ViewPositionStarts equ 00E40H ;Channel 2 Viewport position top

left
Ch2ViewPositionEnds equ 00E44H ;Channel 2 Viewport extents bot

right
VerticalCounter equ 00E9AH ;Vertical counter - Current scan-

line displayed
6-138 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
RenderingSyncselect equ 00EE0H ;Rendering Synchronization Selec-
tion reg

SCALDELAYENA equ 010000000B ;Enable exclusion delay (16
lines) for scaler

SYNCENDLINE equ 000001000B ;Render after end line of
selected Viewport

SYNCSTARTLINE equ 000000000B ;Render after end line of
selected Viewport

;Video Capture equates
VideoPortConfig equ 420h ;enable/disable
VideoPortMaxHeight equ 424h ;video port height
ChScaler0Offsets equ 00B20H ;Scaler 0 Channel display X,Y

offsets
ChScaler0SIndex equ 00B24H ;Scaler 0 Channel attached sur-

face index
ChVidCapOffsets equ 00BE0H ;Video Capture Channel display

X,Y offsets
ChVidCapSIndex equ 00BE4H ;Video Capture Channel

attached surface index
ChScaler0Format equ 00D20H ;Scaler 0 Channel Format

;
; Deferred Control Port
DeferredControlStart equ 04000H ;Offset into deferred control area

; 2D Rendering Control
; Commands 10987654321098765432109876543210
CMD_NOP equ 000000000000000000000000 00000000B;NOP command
NOLOAD equ 00000000000000001000000000000000B;No parameter load
EXEC_OPAQUE_RECT equ 00000000000000000000000100000000B;Draw Opaque rectan-

gle
EXEC_TRANS_TEXT equ 000000000000000000000010 00000000B;Draw Transparent

text
EXEC_OPAQUE_TEXT equ 00000000000000000000001100000000B;Draw OPaque text
EXEC_LOAD_MPATTERN equ 00000000000000000000010000000000B;Load mono pattern
EXEC_LOAD_CPATTERN equ 00000000000000000000010100000000B;Load color pattern
EXEC_PAT_COPY equ 000000000000000000000110 00000000B;Pattern Copy
EXEC_NEXT_INSYNC equ 000000000000000000001110 00000000B;Execute Synchro-

nously
EXEC_CMD equ 000000000000000000001111 00000000B;Execute Command

specified in Flags
register

; Parameters
DestXY equ 000000000000000010000000000010 00B;Destination X,Y
XYExtents equ 000000000000000010000000000011 00B;Dest. X,Y extents
SrcXY equ 000000000000000010000000000100 00B;Source X,Y
ClipULXY equ 000000000000000010000000000110 00B;Clip Upper Left X,Y
ClipLRXY equ 000000000000000010000000000111 00B;Clip Lower Right

X,Y
SM3110 Technical Reference Manual 6-139

Programmer’s Reference Si l icon
 M A G I C
FLAGs equ 000000000000000010000000001000 00B ;Flags Register
SURFACEBaseIndex equ 000000000000000010000000001001 00B ;Src. Dest. Base

indices
FGColor equ 000000000000000010000000001010 00B ;Foreground

Color
BGColor equ 000000000000000010000000001011 00B ;Background

Color
TRANSColor equ 000000000000000010000000001100 00B ;Transparent

Color
; FLAGs Register Definition
; 10987654321098765432109876543210
F_BYTE equ 0000000000 0000000000000000000000B ;Image data byte aligned
F_WORD equ 00000000010000000000000000000000B ;Image data word aligned
F_DWORD equ 00000000100000000000000000000000B ;Image data dword aligned
F_BIT equ 0000000011 0000000000000000000000B ;Image data bit aligned

;- valid with mono data
only

F_XN equ 00000000001 000000000000000000000B ;X decreasing - origin at
top left

F_XP equ 00000000000 000000000000000000000B ;X increasing - left to
right

F_YN equ 000000000001 00000000000000000000B ;Y decreasing
F_YP equ 000000000000 00000000000000000000B ;Y increasing - top to bot-

tom
; If Bit 12 is 0 - Mono
Source

F_MPT equ 00000000000001 000000000000000000B ;Mono Blt - pattern
transparent

F_MNORMAL equ 00000000000000000000000000000000B ;Mono Blt - color expand
;1==Foreground, 0==Back-
ground

F_MBT equ 0000000000000001 0000000000000000B ;Mono Blt Transparency
; - Background transparent

F_MFT equ 0000000000000010 0000000000000000B ;Mono Blt Transparency
; - Foreground transparent

F_MINVERT equ 0000000000000011 0000000000000000B ;Mono Blt - color expand
;0==Foreground, 1==Back-
ground
; If Bit 12 is 1 - Color
Source

F_TCINVERT equ 00000000000001 000000000000000000B ;Invert color transparency
F_TCOPAQUE equ 00000000000000000000000000000000B ;No color transparency
6-140 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
F_TCSRC equ 0000000000000001 0000000000000000B;Color Source trans-
parency

F_TCDEST equ 0000000000000010 0000000000000000B;Color Destination
transparency

F_TCPAT equ 0000000000000011 0000000000000000B;Color Pattern
transparency

F_CLIP equ 00000000000000001 000000000000000B;Enable clipping
F_NOCLIP equ 00000000000000000 000000000000000B;Disable clipping
F_USEPATTERN equ 000000000000000000 00000000000000B;Use pattern buffer
F_USEBGCOLOR equ 00000000000000000100000000000000B;Use Background

color for pattern
F_LOCALMEM equ 0000000000000000000 0000000000000B;Blt Src Local mem-

ory
F_IMGDATA equ 0000000000000000001 0000000000000B;Blt Src System mem-

ory
F_MONO equ 00000000000000000000 000000000000B;Source Format Mono-

chrome
F_COLOR equ 00000000000000000001 000000000000B;Source Format Color
CMD_BITBLT equ 000000000000000000000010 00000000B;Bitblt command
CMD_LINE equ 000000000000000000000010 00000000B;Line command
CMD_MEMTEST equ 00000000000000000000010000000000B;Memory test command
F_ROPMASK equ 00000000000000000000000011111111 B;ROP mask
SM3110 Technical Reference Manual 6-141

Programmer’s Reference Si l icon
 M A G I C
6.14.2 Macros
The following macro is used to generate deferred an address value for its immedate register. The
register address must be ORed with the physical screen base address and written to the deferred
port data area followed by the register data (both values must be doubleword). These writes are
recorded into the deferred buffer and immedate registers are written with this data during VBLANK
(replay).

Load Deferred Register Address with DWORD

LDAD MACRO reg,labl
mov reg, PhyCmdPortAddress
add reg, labl
ENDM
6-142 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.14.3 Clock Synthesizer Programming Guide

There are three Phase-Locked Loop-based programmable clock synthesizers in SM3110 for the
two display clocks (DCLK and PCLK) and one memory/2D/3D engine clock (MCLK) from an exter-
nally supplied reference frequency. Each of the output frequencies may be programmed to up to
400 MHz. An external, crystal-controlled oscillator generates the reference frequency (typically
14.31818 MHz) that is driven into the SM3110 on pin Y22. Alternatively, an external crystal can be
connected between pins Y22 and W23 to generate the reference frequency. All three PLL synthe-
sizers in the SM3110 are the same design.

Figure 6-18. PLL Block Diagram

F O U T

F IN

BUFMux
Output
Divider

(NO)

Feedback
Divider

(NF)

Phase

Comparator

Charge

Pump
VCO

F C K

O E

FN R

F N F

P D B P

Input
Divider

(NR)
SM3110 Technical Reference Manual 6-143

Programmer’s Reference Si l icon
 M A G I C
6.14.3.1 Theory of Operation

The Phase Comparator compares the phase difference of the input clocks from Input Divider (or
Reference Divider), FNR, and Feedback Divider (or Loop Divider), FNF. If the edge of FNR arrives
earlier than the edge of FNF, the output of the comparator adjusts the Charge Pump to provide a
higher voltage to VCO, which increases the frequency of FCK and brings the edge of FNF earlier. If
FNR is later than FNF, the Charge Pump decreases the voltage supplied to the VCO, which
decreases frequency of FCK and delays the edge of FNF. With both edges aligned all the time,
their frequencies must be the same, too.

With programmable Input and Feedback Dividers, the FNR and FNF can be at the same frequency
while FIN and FCK can be different frequencies. This means the SM3110 can provide a wide range
of output frequencies FCK with a fixed input reference frequency FIN.

The Output Divider provides a wider output frequency range for FOUT while it keeps the VCO run-
ning at narrower, optimized range. Without this divider, FOUT would have to have the same fre-
quency range as FCK.

These clock synthesizers have built-in power management which is controlled by signal PD. It can
turn off the clock circuit to save power when not in use. The output buffer can also be turned off
with signal OE.

The BP signal controls a muxing bypass circuit. When the BP signal is set to bypass mode, the
output FOUT and input FIN have the same frequency.
6-144 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.14.3.2 Registers

Two registers control each clock synthesizer. In the first register, two byte specify the three (refer-
ence, feedback loop and output) dividers. In the second register, one byte controls the output and
the PLL/VCO power down.

6.14.3.3 Frequency Control for Memory/Dot/Panel Clock

The actual divide values for NR and NF are the binary values programmed in this register, bit 13 to
9 for NR and bit 8 to 0 for NF, plus two. For example, if the binary value in bit 13 to 9 is 10011
(decimal 19), the actual dividing value for Input Divider is decimal 21. If the binary value in bit 8 to
0 is 011001010 (decimal 202), the actual dividing value for Feedback Divider is decimal 204. The
actual divide value for NO is specified in the register definition.

Index Field Access Function

+080H 15:00 R/W MCLK Loop Control
+0090H 15:00 R/W DCLK Loop Control
+1090H 15:00 R/W DCLK Loop Control

Bits Field

15:14 Output Divider
Value Semantics

0 NO has no division
1 NO is divide by 2
2 NO is divide by 2
3 NO is divide by 4

Bits Field

13:09 Reference Divider
Value Semantics

0 Reserved
1-31 Divide ratio (NR) is this value plus two

Bits Field

08:00 Feedback Loop Divider
Value Semantics

0 Reserved
1-511 Divide ratio (NF) is this value plus two
SM3110 Technical Reference Manual 6-145

Programmer’s Reference Si l icon
 M A G I C
6.14.3.4 VCO Control for Memory Clock Synthesizer

Index Field Access Function

+082H 07:00 R/W MCLK VCO Control
Bits Field

07 PLL Module Internal Bypass Control (BP)
Value Semantics

0 Disabled. Default, normal operation.
1 Enabled.

Bits Field

06 PLL Module Internal power down Control (PD)
Value Semantics

0 Disabled Default, normal operation.
1 Enabled. PLL is in power down mode.

Bits Field

05 Clock Tree Source Select (Set by level of strapping input from ROMA1. Input
pulled up to VDD.)
Value Semantics

0 External Clock
1 Internal PLL Clock. Default.

Bits Field

04 Load PLL Counter to Working Register
Value Semantics

0 Normal Operation. Default.
1 Load Register. Automatically returns to 0 after loading working register.

Bits Field

03:02 Reserved
01 PLL Module Internal output enable Control (OE)

Value Semantics

0 Enabled
1 Disabled

Bits Field

00 Clock Tree Source Enable
Value Semantics

0 Disabled. MCLK forced to ‘0’.
1 Enabled. MCLK running.
6-146 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.14.3.5 VCO Control for Dot/Panel Clock Synthesizer

Index Field Access Function

+0092H 07:00 R/W DCLK VCO Control (CRT)
+1092H 07:00 R/W DCLK VCO Control (LCD)

Bits Field

07 PLL Module Internal Bypass Control (BP)
Value Semantics

0 Disabled. Default, normal operation.
1 Enabled.

Bits Field

06 PLL Module Internal power down Control (PD)
Value Semantics

0 Disabled Default, normal operation.
1 Enabled. PLL is in power down mode.

Bits Field

05 Clock Tree Source Select (Set by level of strapping input from ROMA1. Input
pulled up to VDD.)
Value Semantics

0 External Clock
1 Internal PLL Clock. Default.

Bits Field

04 Load PLL Counter to Working Register
Value Semantics

0 Normal Operation. Default.
1 Load Register. Automatically returns to 0 after loading working regis-

ter.
Bits Field

03 PLL Module Internal output enable Control (OE)
Value Semantics

0 Enabled
1 Disabled
SM3110 Technical Reference Manual 6-147

Programmer’s Reference Si l icon
 M A G I C
VCO Control for Dot/Panel Clock Synthesizer (continued)

6.14.3.6 Selecting Register Value

The output frequency of VCO, FCK, is determined by following equation:

FCK = Fin * (NF / NR)

Where FCK is the output frequency of VCO, Fin is the input reference frequency, NR is the input
divider value, and NF is the feedback divider value.

The output frequency is determined by following equation:

Fin * NF
Fout = --------------------

NR * NO

Where Fout is the output frequency, Fin is the input reference frequency, NR is the input divider
value, NF is the feedback divider value and NO is the output divider value.

Bits Field

02 Reference Internal Oscillator Pad Control (Power Down)
Value Semantics

0 Enabled. Default.
1 Disabled. shut down oscillator to reduce power dissipation in sleep

mode.
Bits Field

01 Divide Ratio Select
Value Semantics

0 VGA DCLK Frequencies, VGA Mode. Default.
Use divide ratio specified in either 94|95H or 96||97H selected by
3CCH[3:2].

1 Programmable DCLK Frequencies, Enhanced Mode.

Use divide ratio specified in F0||F1H.
Bits Field

00 Clock Tree Source Enable
Value Semantics

0 Disabled. DCLK forced to ‘0’.
1 Enabled. DCLK running.
6-148 SM3110 Technical Reference Manual

Programmer’s ReferenceSi l icon
 M A G I C
6.14.3.7 Programming Limitations

The synthesizer is very flexible. It doesn’t have any special requirement of the programming order.
However, VCO output frequency, FCK, should be kept in its mid frequency range, which is about
200 MHz.

Bit 4 of the 082H, 0092H and 1092H registers is used to load the divider value into each PLL.
These registers should be the last ones programmed when changing any divider values.

6.14.3.8 Register Values for Common Frequencies

The table below shows most of the frequencies required by VESA defined modes. This table is
shown only as a programming example. There may be other register values not shown which can
be used to achieve the same frequency. Please consult the equations in the earlier section for
programming values. This table is based on reference input clock FIN at 14.31818 MHz.

Resolution Refresh
Rate

NF
Register

Value

NR
Register

Value

NO
Register

Value

VCO
Freq.

Actual
Freq.

Pixel
Clock
Freq.

% Error

640x480 60 216 29 3 100.7 25.17 25.175 -0.02
640x480 75 42 3 3 126 31.5 31.5 0
640x480 56 169 15 3 144.04 36.01 36 0.03
800x600 60 188 15 3 160.04 40.01 40 0.02
800x600 75 247 16 3 198.08 49.52 49.5 0.04
800x600 72 431 29 3 200 50 50 0
800x600 85 438 26 3 225 56.25 56.25 0
1024x768 60 343 17 3 260 65 65 0
1024x768 70 218 19 2 150 75 75 0
1024x768 75 31 1 2 157.5 78.75 78.75 0
1024x768 85 64 3 2 189 94.5 94.5 0
1280x1024 60 345 21 2 216.02 108.01 108 0.01
1280x1024 75 130 5 2 270 135 135 0
1280x1024 85 64 1 2 315 157.5 157.5 0
1600x1200 60 179 6 2 323.96 161.97 162 -0.02
1600x1200 65 96 2 2 350.8 175.4 175.5 -0.06
1600x1200 70 130 3 2 378 189 189 0
1600x1200 75 97 5 0 202.5 202.5 202.5 0
1600x1200 85 318 18 0 229.1 229.09 229.5 -0.18
SM3110 Technical Reference Manual 6-149

Programmer’s Reference Si l icon
 M A G I C
6-150 SM3110 Technical Reference Manual

	6 Programmer’s Reference
	6.1 Overview
	6.2 Address Mapping
	6.2.1 Local Memory Address Space
	6.2.2 Memory-Mapped Resources Address Space
	6.2.3 Control Address Space Memory Mapping
	6.2.3.1 2D Control Registers (Display 0/Display 1)
	6.2.3.2 3D Control Registers
	6.2.3.3 3D Command/Parameter FIFO
	6.2.3.4 2D Command/Parameter FIFO
	6.2.3.5 2D Image Data FIFO

	6.2.4 Display Memory Arrays
	6.2.4.1 Surfaces
	6.2.4.2 Texture Memory
	6.2.4.3 Z-Buffers
	6.2.4.4 Memory Buffer Allocation

	6.2.5 Byte Ordering

	6.3 BIOS Functions
	6.3.1 BIOS Initialization: Power-On Self Test (POST)
	6.3.2 Set Mode

	6.4 Driver Functions
	6.4.1 Device detection
	6.4.2 Device configuration
	6.4.3 Memory-mapped control address
	6.4.3.1 Enable/Disable access
	6.4.3.2 2D Command Port selector
	6.4.3.3 2D Image Data Port selector
	6.4.3.4 VGA I/O Ports
	6.4.3.5 A0000H-based 128K VGA memory
	6.4.3.6 PCI configuration space

	6.4.4 Memory Address Allocation
	6.4.4.1 Local memory address space
	6.4.4.2 Display (video) memory address
	6.4.4.3 16-bit Real Mode Addressing
	6.4.4.4 16-bit Protected Mode Addressing
	6.4.4.5 32-bit Mode Addressing

	6.4.5 Physical Buffers for FIFOs
	6.4.6 Linear/Segmented mode
	6.4.7 Cursor control
	6.4.7.1 Cursor Format
	6.4.7.2 Cursor data buffer and surface
	6.4.7.3 Set Monochrome Cursor data
	6.4.7.4 Set Color Cursor data
	6.4.7.5 Cursor Deferred control
	6.4.7.6 Set Cursor Position and Turn Cursor On

	6.4.8 Icon

	6.5 2D Functions
	6.5.1 Display Operations
	6.5.1.1 Define a Surface
	6.5.1.2 Channel Controls - assign surface
	6.5.1.3 Channel Controls - Offsets & viewports location
	6.5.1.4 Enable/Disable Channel Display
	6.5.1.5 Set Display FIFO Controls
	6.5.1.6 Set Channel 0 X,Y Scale Factors
	6.5.1.7 Set Overlay Priority
	6.5.1.8 Set Mix Controls - Blend
	6.5.1.9 Set Mix Controls - Color Keying
	6.5.1.10 Get Displayed Scanline

	6.5.2 2D Command and Data FIFOs
	6.5.2.1 Image/Data Control Port
	6.5.2.2 2D Command Port
	6.5.2.3 FIFO Status

	6.5.3 2D Rendering Engine Commands
	6.5.3.1 Wait Engine Idle
	6.5.3.2 Check FIFO size
	6.5.3.3 Clip Rectangle
	6.5.3.4 Load Mono Pattern
	6.5.3.5 Load Color Pattern
	6.5.3.6 Load General pattern
	6.5.3.7 Block fill (Opaque Rectangle)
	6.5.3.8 Transparent Text
	6.5.3.9 Opaque Text
	6.5.3.10 BitBLT
	6.5.3.11 Pattern BLT Without Source Operand
	6.5.3.12 Display Memory Source BLT with/without Pattern
	6.5.3.13 System Memory Source BLT with/without Pattern
	6.5.3.14 Line Draw

	6.6 3D Functions
	6.6.1 Overview
	6.6.1.1 Feature Set
	6.6.1.2 3D Rendering Engine
	6.6.1.3 3D Rasterization Pipeline

	6.6.2 3D Engine Operation
	6.6.2.1 Initialization
	6.6.2.2 3D Command FIFO

	6.6.3 3D Command Format
	6.6.4 3D Primitive Commands
	6.6.4.1 Triangle Strip/Fan
	6.6.4.2 Triangle List
	6.6.4.3 Point List

	6.6.5 Copy Memory and DMA Command
	6.6.6 Synchronization Command
	6.6.7 Load State Register Command
	6.6.8 Texture Loading
	6.6.9 2D/3D synchronization
	6.6.10 Buffer Issues
	6.6.10.1 Buffer Alignment
	6.6.10.2 Buffer Formats

	6.6.11 Performance Issues

	6.7 LCD Panel Programming
	6.7.1 LCD Flat Panel Registers
	6.7.1.1 Initialization
	6.7.1.2 Set to Desired Mode
	6.7.1.3 Standard VGA Modes
	6.7.1.4 Enhanced Modes
	6.7.1.5 Set Mode Sequence

	6.8 Dual View
	6.8.1 Overview
	6.8.2 Enabling Second Display
	6.8.2.1 Enable Simultaneous View
	6.8.2.2 Enable Dual View

	6.9 Motion Compensation
	6.9.1 Overview
	6.9.2 Block Diagram
	6.9.3 Motion Compensation Client Commands
	6.9.3.1 DMCM Commands
	6.9.3.2 DMCM surface allocation

	6.9.4 Registers
	6.9.4.1 Start and End Decode Functions
	6.9.4.2 CDU Start Motion Compensation Command
	6.9.4.3 End of Stream Instruction
	6.9.4.4 Format Conversion Instruction

	6.9.5 Display Memory Requirements
	6.9.5.1 Frame and Format Buffers
	6.9.5.2 Screen Resolutions Supported
	6.9.5.3 System Memory Requirements

	6.10 Power Management
	6.10.1 Overview
	6.10.2 OnNow Power Management
	6.10.3 VESA BIOS Power Management
	6.10.4 Other Power Management
	6.10.5 Registers for OnNow and VESA DPMS
	6.10.5.1 D0 – On
	6.10.5.2 D1 – Standby
	6.10.5.3 D2 – Suspend
	6.10.5.4 D3 – Off

	6.10.6 Registers for Dynamic Power Management

	6.11 Video Capture
	6.11.1 Overview
	6.11.2 I2C device interface
	6.11.3 Video port control
	6.11.4 Interrupt for video capture

	6.12 TV Out
	6.13 Diagnostics
	6.14 Software Definitions
	6.14.1 Equates
	6.14.2 Macros
	6.14.3 Clock Synthesizer Programming Guide
	6.14.3.1 Theory of Operation
	6.14.3.2 Registers
	6.14.3.3 Frequency Control for Memory/Dot/Panel Clock
	6.14.3.4 VCO Control for Memory Clock Synthesizer
	6.14.3.5 VCO Control for Dot/Panel Clock Synthesizer
	6.14.3.6 Selecting Register Value
	6.14.3.7 Programming Limitations
	6.14.3.8 Register Values for Common Frequencies

